Abstract
Climate change and human–wildlife conflict are both pressing challenges for biodiversity conservation and human well-being in the Anthropocene. Climate change is a critical yet underappreciated amplifier of human–wildlife conflict, as it exacerbates resource scarcity, alters human and animal behaviours and distributions, and increases human–wildlife encounters. We synthesize evidence of climate-driven conflicts occurring among ten taxonomic orders, on six continents and in all five oceans. Such conflicts disrupt both subsistence livelihoods and industrial economies and may accelerate the rate at which human–wildlife conflict drives wildlife declines. We introduce a framework describing distinct environmental, ecological and sociopolitical pathways through which climate variability and change percolate via complex social–ecological systems to influence patterns and outcomes of human–wildlife interactions. Identifying these pathways allows for developing mitigation strategies and proactive policies to limit the impacts of human–wildlife conflict on biodiversity conservation and human well-being in a changing climate.
This is a preview of subscription content, access via your institution
Access options
Subscribe to Nature+
Get immediate online access to Nature and 55 other Nature journal
$29.99
monthly
Subscribe to Journal
Get full journal access for 1 year
$99.00
only $8.25 per issue
All prices are NET prices.
VAT will be added later in the checkout.
Tax calculation will be finalised during checkout.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.



Data availability
All case study data derived from the systematic literature review are available at https://github.com/Abrahms-Lab/Climate-Conflict-Review and archived via Zenodo (https://doi.org/10.5281/zenodo/7502350).
Code availability
All R code used for analyses is available at https://github.com/Abrahms-Lab/Climate-Conflict-Review and archived via Zenodo (https://doi.org/10.5281/zenodo/7502350).
References
-
Abrahms, B. Human–wildlife conflict under climate change. Science 373, 484–485 (2021).
-
Nyhus, P. J. Human–wildlife conflict and coexistence. Annu. Rev. Environ. Resour. 41, 143–171 (2016).
-
Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).
-
Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).
-
Abrahms, B. et al. Data from: Climate change as an amplifier of human–wildlife conflict. Github https://github.com/Abrahms-Lab/Climate-Conflict-Review (2022).
-
IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).
-
Sydeman, W. J., Santora, J. A., Thompson, S. A., Marinovic, B. & Lorenzo, E. D. Increasing variance in North Pacific climate relates to unprecedented ecosystem variability off California. Glob. Change Biol. 19, 1662–1675 (2013).
-
Wang, G. et al. Continued increase of extreme El Niño frequency long after 1.5 °C warming stabilization. Nat. Clim. Change 7, 568–572 (2017).
-
Filazzola, A., Blagrave, K., Imrit, M. A. & Sharma, S. Climate change drives increases in extreme events for lake ice in the Northern Hemisphere. Geophys. Res. Lett. 47, e2020GL089608 (2020).
-
Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).
-
Martin, J. T. et al. Increased drought severity tracks warming in the United States’ largest river basin. Proc. Natl Acad. Sci. USA 117, 11328–11336 (2020).
-
Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).
-
Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).
-
Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).
-
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
-
Lin, D., Xia, J. & Wan, S. Climate warming and biomass accumulation of terrestrial plants: a meta‐analysis. New Phytol. 188, 187–198 (2010).
-
Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).
-
Marinovic, B. B., Croll, D. A., Gong, N., Benson, S. R. & Chavez, F. P. Effects of the 1997–1999 El Niño and La Niña events on zooplankton abundance and euphausiid community composition within the Monterey Bay coastal upwelling system. Prog. Oceanogr. 54, 265–277 (2002).
-
Kardol, P. et al. Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old‐field ecosystem. Glob. Change Biol. 16, 2676–2687 (2010).
-
Prugh, L. R. et al. Ecological winners and losers of extreme drought in California. Nat. Clim. Change 8, 819–824 (2018).
-
Sorte, C. J. B., Williams, S. L. & Zerebecki, R. A. Ocean warming increases threat of invasive species in a marine fouling community. Ecology 91, 2198–2204 (2010).
-
Muehlenbein, M. P. Human–environment interactions, current and future directions. Hum. Environ. Interact. 1, 79–94 (2012).
-
Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).
-
Mason, T. H. E., Keane, A., Redpath, S. M. & Bunnefeld, N. The changing environment of conservation conflict: geese and farming in Scotland. J. Appl. Ecol. 55, 651–662 (2018).
-
Pérez-Flores, J., Mardero, S., López-Cen, A., Contreras-Moreno, F. M. & Pérez-Flores, J. Human–wildlife conflicts and drought in the greater Calakmul Region, Mexico: implications for tapir conservation. Neotrop. Biol. Conserv. 16, 539–563 (2021).
-
Mariki, S. B., Svarstad, H. & Benjaminsen, T. A. Elephants over the cliff: explaining wildlife killings in Tanzania. Land Use Policy 44, 19–30 (2015).
-
Mukeka, J. M., Ogutu, J. O., Kanga, E. & Roskaft, E. Spatial and temporal dynamics of human–wildlife conflicts in the Kenya Greater Tsavo Ecosystem. Hum. Wildl. Interact. 14, 255–272 (2020).
-
Popp, J. N., Hamr, J., Chan, C. & Mallory, F. F. Elk (Cervus elaphus) railway mortality in Ontario. Can. J. Zool. 96, 1066–1070 (2018).
-
Olson, D. D. et al. How does variation in winter weather affect deer–vehicle collision rates? Wildl. Biol. 21, 80–87 (2015).
-
Nyhus, P. & Tilson, R. Agroforestry, elephants, and tigers: balancing conservation theory and practice in human-dominated landscapes of Southeast Asia. Agric. Ecosyst. Environ. 104, 87–97 (2004).
-
Laufenberg, J. S., Johnson, H. E., Doherty, P. F. & Breck, S. W. Compounding effects of human development and a natural food shortage on a black bear population along a human development–wildland interface. Biol. Conserv 224, 188–198 (2018).
-
Blondin, H., Abrahms, B., Crowder, L. B. & Hazen, E. L. Combining high temporal resolution whale distribution and vessel tracking data improves estimates of ship strike risk. Biol. Conserv. 250, 108757 (2020).
-
Abrahms, B. et al. Dynamic ensemble models to predict distributions and anthropogenic risk exposure for highly mobile species. Divers. Distrib. 25, 1182–1193 (2019).
-
Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).
-
Kabir, M., Ghoddousi, A., Awan, M. S. & Awan, M. N. Assessment of human–leopard conflict in Machiara National Park, Azad Jammu and Kashmir, Pakistan. Eur. J. Wildl. Res. 60, 291–296 (2014).
-
Soto, J. R. Patterns and Determinants of Human–Carnivore Conflicts in the Tropical Lowlands of Guatemala (Univ. of Florida, 2008).
-
Honda, T. & Kozakai, C. Mechanisms of human–black bear conflicts in Japan: in preparation for climate change. Sci. Total Environ. 739, 140028 (2020).
-
Mukeka, J. M., Ogutu, J. O., Kanga, E. & Røskaft, E. Human–wildlife conflicts and their correlates in Narok County, Kenya. Glob. Ecol. Conserv. 18, e00620 (2019).
-
Kuiper, T. R. et al. Seasonal herding practices influence predation on domestic stock by African lions along a protected area boundary. Biol. Conserv. 191, 546–554 (2015).
-
Funston, P. J., Mills, M. G. L. & Biggs, H. C. Factors affecting the hunting success of male and female lions in the Kruger National Park. J. Zool. 253, 419–431 (2001).
-
Schiess-Meier, M., Ramsauer, S., Gabanapelo, T. & Konig, B. Livestock predation—insights from problem animal control registers in Botswana. J. Wildl. Manag. 71, 1267–1274 (2007).
-
Wilder, J. M. et al. Polar bear attacks on humans: implications of a changing climate. Wildl. Soc. B 41, 537–547 (2017).
-
Towns, L., Derocher, A. E., Stirling, I., Lunn, N. J. & Hedman, D. Spatial and temporal patterns of problem polar bears in Churchill, Manitoba. Polar Biol. 32, 1529–1537 (2009).
-
Schmidt, A. & Clark, D. ‘It’s just a matter of time:’ lessons from agency and community responses to polar bear-inflicted human injury. Conserv. Soc. 16, 64 (2018).
-
Koenig, J., Shine, R. & Shea, G. The dangers of life in the city: patterns of activity, injury and mortality in suburban lizards (Tiliqua scincoides). J. Herpetol. 36, 62–68 (2002).
-
Whitaker, P. B. & Shine, R. Responses of free-ranging brownsnakes (Pseudonaja textilis: Elapidae) to encounters with humans. Wildl. Res. 26, 689–704 (1999).
-
Saberwal, V., Gibbs, J., Chellam, R. & Johnsingh, A. Lion–human conflict in the Gir Forest, India. Conserv. Biol. 8, 501–507 (1994).
-
Ferreira, S. M. & Viljoen, P. African large carnivore population changes in response to a drought. Afr. J. Wildl. Res. https://hdl.handle.net/10520/ejc-wild2-v52-n1-a1 (2022).
-
Masiaine, S. et al. Landscape-level changes to large mammal space use in response to a pastoralist incursion. Ecol. Indic. 121, 107091 (2021).
-
Kiria, E. A Spatial Multi-criteria Analysis of Land Use, Land Cover and Climate Changes on Wildlife Ecosystems Planning and Management in Meru Conservation Area (Chuka Univ., 2018).
-
Benansio, J., Demaya, G., Dendi, D. & Luiselli, L. Attacks by Nile crocodiles (Crocodylus nilotticus) on humans and livestock in the Sudd wetlands, South Sudan. Russ. J. Herpetol. https://doi.org/10.30906/1026-2296-2022-29-4-199-205 (2022).
-
Melia, N., Haines, K. & Hawkins, E. Sea ice decline and 21st century trans‐Arctic shipping routes. Geophys. Res. Lett. 43, 9720–9728 (2016).
-
Ivanova, S. V. et al. Shipping alters the movement and behavior of Arctic cod (Boreogadus saida), a keystone fish in Arctic marine ecosystems. Ecol. Appl. 30, e02050 (2020).
-
Hauser, D. D. W., Laidre, K. L. & Stern, H. L. Vulnerability of Arctic marine mammals to vessel traffic in the increasingly ice-free Northwest Passage and Northern Sea Route. Proc. Natl Acad. Sci. USA 5, 201803543–201803546 (2018).
-
Hovelsrud, G. K., McKenna, M. & Huntington, H. P. Marine mammal harvests and other interactions with humans. Ecol. Appl. 18, S135–S147 (2008).
-
Santora, J. A. et al. Habitat compression and ecosystem shifts as potential links between marine heatwave and record whale entanglements. Nat. Commun. 11, 536 (2020).
-
Samhouri, J. F. et al. Marine heatwave challenges solutions to human–wildlife conflict. Proc. R. Soc. B 288, 20211607 (2021).
-
Chapman, B. K. & McPhee, D. Global shark attack hotspots: identifying underlying factors behind increased unprovoked shark bite incidence. Ocean Coast. Manag. 133, 72–84 (2016).
-
Burgess, G., Buch, R., Carvalho, F., Garner, B. & Walker, C. in Sharks and Their Relatives II: Biodiversity, Adaptive Physiology, and Conservation (eds Carrier, J. C. et al.) 541–565 (CRC Press, 2010).
-
Woodward, A. R., Leone, E. H., Dutton, H. J., Waller, J. E. & Hord, L. Characteristics of American alligator bites on people in Florida. J. Wildl. Manag. 83, 1437–1453 (2019).
-
Khorozyan, I., Soofi, M., Ghoddousi, A., Hamidi, A. K. & Waltert, M. The relationship between climate, diseases of domestic animals and human–carnivore conflicts. Basic Appl. Ecol. 16, 703–713 (2015).
-
Treves, A. & Bruskotter, J. Tolerance for predatory wildlife. Science 344, 476–477 (2014).
-
Carpenter, S. Exploring the impact of climate change on the future of community‐based wildlife conservation. Conserv. Sci. Pract. 4, e585 (2022).
-
Nisi, A. Cryptic Neighbors: Connecting Movement Ecology and Population Dynamics for a Large Carnivore in a Human-dominated Landscape (Univ. California, 2021). .
-
Asiyanbi, A. P. A political ecology of REDD+: property rights, militarised protectionism, and carbonised exclusion in Cross River. Geoforum 77, 146–156 (2016).
-
Dawson, N. M. et al. Barriers to equity in REDD+: deficiencies in national interpretation processes constrain adaptation to context. Environ. Sci. Policy 88, 1–9 (2018).
-
Rabaiotti, D. et al. High temperatures and human pressures interact to influence mortality in an African carnivore. Ecol. Evol. 11, 8495–8506 (2021).
-
Vargas, S. P., Castro-Carrasco, P. J., Rust, N. A. & F, J. L. R. Climate change contributing to conflicts between livestock farming and guanaco conservation in central Chile: a subjective theories approach. Oryx 55, 275–283 (2021).
-
Heemskerk, S. et al. Temporal dynamics of human–polar bear conflicts in Churchill, Manitoba. Glob. Ecol. Conserv. 24, e01320 (2020).
-
Schell, C. J. et al. The evolutionary consequences of human–wildlife conflict in cities. Evol. Appl. 14, 178–197 (2021).
-
Clark, J. A. & May, R. M. Taxonomic bias in conservation research. Science 297, 191–192 (2002).
-
Ravenelle, J. & Nyhus, P. J. Global patterns and trends in human–wildlife conflict compensation. Conserv. Biol. 31, 1247–1256 (2017).
-
Zack, C. S., Milne, B. T. & Dunn, W. Southern oscillation index as an indicator of encounters between humans and black bears in New Mexico. Wildl. Soc. Bull. 31, 517–520 (2003).
-
Acosta-Jamett, G., Gutiérrez, J. R., Kelt, D. A., Meserve, P. L. & Previtali, M. A. El Niño Southern Oscillation drives conflict between wild carnivores and livestock farmers in a semiarid area in Chile. J. Arid. Environ. 126, 76–80 (2016).
-
Timmermann, A. et al. El Niño–Southern Oscillation complexity. Nature 559, 535–545 (2018).
-
Wittemyer, G., Elsen, P., Bean, W. T., Burton, A. C. O. & Brashares, J. S. Accelerated human population growth at protected area edges. Science 321, 123–126 (2008).
-
Powell, G., Versluys, T. M. M., Williams, J. J., Tiedt, S. & Pooley, S. Using environmental niche modelling to investigate abiotic predictors of crocodilian attacks on people. Oryx 54, 639–647 (2020).
-
Maxwell, S. M. et al. Dynamic ocean management: defining and conceptualizing real-time management of the ocean. Mar. Policy 58, 42–50 (2015).
-
Maxwell, S. M., Gjerde, K. M., Conners, M. G. & Crowder, L. B. Mobile protected areas for biodiversity on the high seas. Science 367, 252–254 (2020).
-
Pons, M. et al. Trade-offs between bycatch and target catches in static versus dynamic fishery closures. Proc. Natl Acad. Sci. USA 119, e2114508119 (2022).
-
Oestreich, W. K., Chapman, M. S. & Crowder, L. B. A comparative analysis of dynamic management in marine and terrestrial systems. Front. Ecol. Environ. 18, 496–504 (2020).
-
Mason, N., Ward, M., Watson, J. E. M., Venter, O. & Runting, R. K. Global opportunities and challenges for transboundary conservation. Nat. Ecol. Evol. 4, 694–701 (2020).
-
Dickman, A. J., Macdonald, E. A. & Macdonald, D. W. A review of financial instruments to pay for predator conservation and encourage human–carnivore coexistence. Proc. Natl Acad. Sci. USA 108, 13937–13944 (2011).
-
Ej, N. G. et al. A Future for All: The Need for Human–Wildlife Coexistence (UNEP, 2021).
-
Lankford, A. J., Svancara, L. K., Lawler, J. J. & Vierling, K. Comparison of climate change vulnerability assessments for wildlife. Wildl. Soc. Bull. 38, 386–394 (2014).
-
Syombua, M. An Analysis of Human–Wildlife Conflicts in Tsavo West-Amboseli Agro-Ecosystem Using an Integrated Geospatial Approach: A Case Study of Taveta District (Univ. of Nairobi, 2013).
-
Malhi, Y. et al. The role of large wild animals in climate change mitigation and adaptation. Curr. Biol. 32, R181–R196 (2022).
-
Aryal, A., Brunton, D. & Raubenheimer, D. Impact of climate change on human–wildlife–ecosystem interactions in the Trans-Himalaya region of Nepal. Theor. Appl. Climatol. 115, 517–529 (2013).
-
Aryal, A., Brunton, D., Ji, W., Barraclough, R. K. & Raubenheimer, D. Human–carnivore conflict: ecological and economical sustainability of predation on livestock by snow leopard and other carnivores in the Himalaya. Sustain. Sci. 9, 321–329 (2014).
-
Aryal, A. et al. Predicting the distributions of predator (snow leopard) and prey (blue sheep) under climate change in the Himalaya. Ecol. Evol. 6, 4065–4075 (2016).
-
Nowell, K., Li, J., Paltsyn, M. & Sharma, R. An Ounce of Prevention: Snow Leopard Crime Revisited (Traffic Report, 2016).
Acknowledgements
We are grateful to A. Zimmerman and L. Withey for providing early feedback on our manuscript. We thank our institutions for supporting this work. L.W. was supported under an NSF Graduate Research Fellowship.
Author information
Authors and Affiliations
Contributions
B.A. conceived of the work and led the writing. B.A., T.J.C.-W., E.J., A.M., A.C.N., K.R. and L.W. performed the systematic literature review. All authors contributed writing, edits and ideas to the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Climate Change thanks Maria Paniw and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Methods and Fig. 1.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Abrahms, B., Carter, N.H., Clark-Wolf, T.J. et al. Climate change as a global amplifier of human–wildlife conflict. Nat. Clim. Chang. (2023). https://doi.org/10.1038/s41558-023-01608-5
-
Received:
-
Accepted:
-
Published:
-
DOI: https://doi.org/10.1038/s41558-023-01608-5