Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Evaluation of the current understanding of the impact of climate change on coral physiology after three decades of … – Nature.com

  • Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    Article  CAS  Google Scholar 

  • Brown, B. E. Coral bleaching: causes and consequences. Coral Reefs 16, 129–138 (1997).

    Article  Google Scholar 

  • Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. 50, 839–866 (1999).

    Google Scholar 

  • Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 4937 (2017).

    Article  Google Scholar 

  • Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    Article  CAS  Google Scholar 

  • Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

    Article  CAS  Google Scholar 

  • Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).

    Article  Google Scholar 

  • Warner, M. E., Fitt, W. K. & Schmidt, G. W. The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ. 19, 291–299 (1996).

    Article  Google Scholar 

  • Iglesias-Prieto, R. Temperature-dependent inactivation of photosystem II in symbiotic dinoflagellates. in Proceedings of the 8th International Coral Reef Symposium (eds. Lessios, H. A. & MacIntyre, I. G.) Vol. 2, 1313–1318 (1997).

  • Takahashi, S., Nakamura, T., Sakamizu, M., van Woesik, R. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).

    Article  CAS  Google Scholar 

  • Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc. Natl Acad. Sci. USA 96, 8007–8012 (1999).

    Article  CAS  Google Scholar 

  • Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci. 4, 309 (2017).

  • Gómez-Campo, K., Enríquez, S. & Iglesias-Prieto, R. A road map for the development of the bleached coral phenotype. Front. Mar. Sci. 9, 806491 (2022).

  • Dahlhoff, E. A. & Somero, G. N. Effects of temperature on mitochondria from abalone (genus Haliotis): adaptive plasticity and its limits. J. Exp. Biol. 185, 151–168 (1993).

    Article  Google Scholar 

  • Kajiwara, K., Nagai, A. & Ueno, S. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. 40, 95–103 (1995).

    Google Scholar 

  • Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).

    Article  CAS  Google Scholar 

  • Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs 23, 218–224 (2004).

    Article  Google Scholar 

  • Kleypas, J. A., Buddemeier, R. W. & Gattuso, J.-P. The future of coral reefs in an age of global change. Int. J. Earth Sci. 90, 426–437 (2001).

    Article  CAS  Google Scholar 

  • Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  CAS  Google Scholar 

  • Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  • Vasquez-Elizondo, R. M. & Enríquez, S. Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Sci. Rep. 6, 19030 (2016).

    Article  CAS  Google Scholar 

  • Anthony, K. R., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    Article  CAS  Google Scholar 

  • Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: A review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).

    Article  CAS  Google Scholar 

  • Langdon, C. & Aktinson, M. J. Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J. Geophys. Res. 110, https://doi.org/10.1029/2004JC002576 (2005).

  • Iglesias-Rodriguez, M. D. et al. Phytoplankton calcification in a high-CO2 world. Science 320, 336–340 (2008).

    Article  CAS  Google Scholar 

  • Krumhardt, K. M., Lovenduski, N. S., Iglesias-Rodriguez, M. D. & Kleypas, J. A. Coccolithophore growth and calcification in a changing ocean. Prog. Oceanogr. 159, 276–295 (2017).

    Article  Google Scholar 

  • Kleypas, J. A. et al. Impact of Ocean Acidification on Coral Reefs and Other Marine Calcifiers: A Case Guide for Future Research Vol. 88 (2005).

  • Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E. & McCulloch, M. T. Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Glob. Change Biol. 24, 4857–4868 (2018).

    Article  Google Scholar 

  • Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Change Biol. 19, 1884–1896 (2013).

    Article  Google Scholar 

  • Hoadley, K. D., Pettay, D. T., Dodge, D. & Warner, M. E. Contrasting physiological plasticity in response to environmental stress within different cnidarians and their respective symbionts. Coral Reefs 35, 529–542 (2016).

    Article  Google Scholar 

  • Langdon, C., Albright, R., Baker, A. & Jones, P. Two threatened Caribbean coral species have contrasting responses to combined temperature and acidification stress. Limnol. Oceanogr. 63, 2450–2464 (2018).

    Article  CAS  Google Scholar 

  • Agostini, S. et al. The effects of thermal and high-CO2 stresses on the metabolism and surrounding microenvironment of the coral Galaxea fascicularis. C. R. Biol. 336, 384–391 (2013).

    Article  CAS  Google Scholar 

  • Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob. Change Biol. 9, 1660–1668 (2003).

    Article  Google Scholar 

  • Klein, S. G. et al. Projecting coral responses to intensifying marine heatwaves under ocean acidification. Glob. Change Biol. 28, 1753–1765 (2022).

    Article  CAS  Google Scholar 

  • Colombo-Pallotta, M. F., Rodríguez-Román, A. & Iglesias-Prieto, R. Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs 29, 899–907 (2010).

    Article  Google Scholar 

  • Holcomb, M., Tambutte, E., Allemand, D. & Tambutte, S. Light enhanced calcification in Stylophora pistillata: effects of glucose, glycerol and oxygen. PeerJ 2, e375 (2014).

    Article  Google Scholar 

  • Herfort, L., Thake, B. & Taubner, I. Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J. Phycol. 44, 91–98 (2008).

    Article  CAS  Google Scholar 

  • Tremblay, P., Fine, M., Maguer, J. F., Grover, R. & Ferrier-Pagès, C. Photosynthate translocation increases in response to low seawater pH in a coral–dinoflagellate symbiosis. Biogeosciences 10, 3997–4007 (2013).

    Article  Google Scholar 

  • Briggs, A. A. & Carpenter, R. C. Contrasting responses of photosynthesis and photochemical efficiency to ocean acidification under different light environments in a calcifying alga. Sci. Rep. 9, 3986 (2019).

  • Suggett, D. J. et al. Light availability determines susceptibility of reef building corals to ocean acidification. Coral Reefs 32, 327–337 (2013).

    Article  Google Scholar 

  • IPCC. Climate change 2007: The physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change 747–845 (2007).

  • IPCC. Climate change 2021: The physical science basis. Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (2021).

  • Wall, C. B., Fan, T. Y. & Edmunds, P. J. Ocean acidification has no effect on thermal bleaching in the coral Seriatopora caliendrum. Coral Reefs 33, 119–130 (2014).

    Article  Google Scholar 

  • Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & Mackenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nat. Geosci. 1, 114–117 (2008).

    Article  CAS  Google Scholar 

  • LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570–2580 (2018). e6.

    Article  CAS  Google Scholar 

  • Kemp, D. W. et al. Spatially distinct and regionally endemic Symbiodinium assemblages in the threatened Caribbean reef-building coral Orbicella faveolata. Coral Reefs 34, 535–547 (2015).

    Article  Google Scholar 

  • Enríquez, S., Méndez, E. R., Hoegh-Guldberg, O. & Iglesias-Prieto, R. Key functional role of the optical properties of coral skeletons in coral ecology and evolution. Proc. Biol. Sci. 284, 20161667 (2017).

  • Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).

    Article  Google Scholar 

  • Skirving, W. et al. Remote sensing of coral bleaching using temperature and light: progress towards an operational algorithm. Remote Sens 10, 18 (2017).

    Article  Google Scholar 

  • Warner, M. E., LaJeunesse, T. C., Robison, J. D. & Thur, R. M. The ecological distribution and comparative photobiology of symbiotic dinoflagellates from reef corals in Belize: Potential implications for coral bleaching. Limnol. Oceanogr. 51, 1887–1897 (2006).

    Article  Google Scholar 

  • Krämer, W., Caamaño-Ricken, I., Richter, C. & Bischof, K. Dynamic regulation of photoprotection determines thermal tolerance of two phylotypes of Symbiodinium clade A at two photon flux densities. Photochem. Photobio. 88, 398–413 (2012).

    Article  Google Scholar 

  • Wall, C. B., Mason, R. A. B., Ellis, W. R., Cunning, R. & Gates, R. D. Elevated pCO2 affects tissue biomass composition, but not calcification, in a reef coral under two light regimes. R. Soc. Open Sci. 4, 170683 (2017).

    Article  CAS  Google Scholar 

  • Baghdasarian, G. et al. Effects of temperature and pCO2 on population regulation of Symbiodinium spp. in a tropical reef coral. Biol. Bull. 232, 123–139 (2017).

    Article  Google Scholar 

  • Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181168 (2018).

    Article  Google Scholar 

  • DeCarlo, T. M., Comeau, S., Cornwall, C. E. & McCulloch, M. T. Coral resistance to ocean acidification linked to increased calcium at the site of calcification. Proc. R. Soc. B Biol. Sci. 285, 20180564 (2018).

    Article  Google Scholar 

  • Davies, S. W., Marchetti, A., Ries, J. B. & Castillo, K. D. Thermal and pCO2 stress elicit divergent transcriptomic responses in a resilient coral. Front. Mar. Sci. 3, 112 (2016).

    Article  Google Scholar 

  • Hernansanz-Agustín, P. & Enríquez, J. A. Generation of reactive oxygen species by mitochondria. Antioxidants 10, 415 (2021).

    Article  Google Scholar 

  • Acín-Pérez, R. et al. ROS-triggered phosphorylation of complex II by Fgr kinase regulates cellular adaptation to fuel use. Cell Metab. 19, 1020–1033 (2014).

    Article  Google Scholar 

  • Burris, J. E., Porter, J. W. & Laing, W. A. Effects of carbon dioxide concentration on coral photosynthesis. Mar. Biol. 75, 113–116 (1983).

    Article  CAS  Google Scholar 

  • Muscatine, L., Falkowski, P. G., Dubinsky, Z., Cook, P. A. & McCloskey, L. R. The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc. R. Soc. Lond. B Biol. Sci. 236, 311–324 (1989).

    Article  Google Scholar 

  • Goiran, C., Al-Moghrabi, S., Allemand, D. & Jaubert, J. Inorganic carbon uptake for photosynthesis by the symbiotic coral/dinoflagellate association I. Photosynthetic performances of symbionts and dependence on sea water bicarbonate. J. Exp. Mar. Biol. Ecol. 199, 207–225 (1996).

    Article  CAS  Google Scholar 

  • Buxton, L., Badger, M. & Ralph, P. Effects of moderate heat stress and dissolved inorganic carbon concentration on photosynthesis and respiration of Symbiodinium sp. (Dinophyceae) in culture and in symbiosis. J. Phycol. 45, 357–365 (2009).

    Article  CAS  Google Scholar 

  • Lin, Z., Wang, L., Chen, M. & Chen, J. The acute transcriptomic response of coral-algae interactions to pH fluctuation. Mar. Genomics 42, 32–40 (2018).

    Article  Google Scholar 

  • Ziegler, M. et al. Integrating environmental variability to broaden the research on coral responses to future ocean conditions. Glob. Change Biol. 27, 5532–5546 (2021).

    Article  CAS  Google Scholar 

  • Cornwall, C. E. et al. Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proc. Natl Acad. Sci. 118, e2015265118 (2021).

    Article  CAS  Google Scholar 

  • Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).

    Article  CAS  Google Scholar 

  • Cyronak, T. & Eyre, B. D. The synergistic effects of ocean acidification and organic metabolism on calcium carbonate (CaCO3) dissolution in coral reef sediments. Mar. Chem. 183, 1–12 (2016).

    Article  CAS  Google Scholar 

  • Eyre, B. D., Andersson, A. J. & Cyronak, T. Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat. Clim. Change 4, 969–976 (2014).

    Article  CAS  Google Scholar 

  • Bedwell-Ivers, H. E. et al. The role of in hospite zooxanthellae photophysiology and reef chemistry on elevated pCO2 effects in two branching Caribbean corals: Acropora cervicornis and Porites divaricata. ICES J. Mar. Sci. 74, 1103–1112 (2016).

    Article  Google Scholar 

  • Pierrot, D., Lewis, E. & Wallace, D. W. R. MS excel program developed for CO2 system calculations (2006).

  • Cayabyab, N. M. & Enríquez, S. Leaf photoacclimatory responses of the tropical seagrass Thalassia testudinum under mesocosm conditions: a mechanistic scaling-up study. N. Phytol. 176, 108–123 (2007).

    Article  Google Scholar 

  • Smith, S. V. & Kinsey, D. W. In Coral Reefs: Research Methods (eds. Stoddart, D. R. & Johannes, R. E.) 469–484 (UNESCO, 1978).

  • Yao, W. & Byrne, R. H. Simplified seawater alkalinity analysis—application to the potentiometric titration of the total alkalinity and carbonate content in sea water. Deep Sea Res. Part Oceanogr. Res. Pap. 45, 1383–1392 (1998).

    Article  CAS  Google Scholar 

  • Vasquez-Elizondo, R. M. et al. Absorptance determinations on multicellular tissues. Photosynth. Res. 132, 311–324 (2017).

    Article  CAS  Google Scholar 

  • Whitaker, J. R. & Granum, P. E. An absolute method for protein determination based on the difference in absorbance at 235 and 280 nm. Anal. Biochem. 109, 156–159 (1980).

    Article  CAS  Google Scholar 

  • Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl Acad. Sci. USA 89, 10302–10305 (1992).

    Article  CAS  Google Scholar 

  • Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophyll a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanz. 167, 191–194 (1975).

    Article  CAS  Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going