Uncategorized

Farasan Island of Saudi Arabia confronts the measurable impacts of global warming in 45 years | Scientific Reports – Nature.com

  • Pajak, M. J. & Leatherman, S. The high water line as shoreline indicator. J. Coastal Res. 329–337 (2002).

  • Mills, J. P., Buckley, S. J., Mitchell, H. L., Clarke, P. J. & Edwards, S. J. A geomatics data integration technique for coastal change monitoring. Earth Surf. Proc. Land. 30, 651–664 (2005).

    ADS  Article  Google Scholar 

  • Marfai, M. A., Almohammad, H., Dey, S., Susanto, B. & King, L. Coastal dynamic and shoreline mapping: Multi-sources spatial data analysis in Semarang Indonesia. Environ. Monit. Assess. 142, 297–308 (2007).

    PubMed  Article  Google Scholar 

  • Mujabar, P. S. & Chandrasekar, N. Shoreline change analysis along the coast between Kanyakumari and Tuticorin of India using remote sensing and GIS. Arab. J. Geosci. 6, 647–664 (2011).

    Article  Google Scholar 

  • Ghosh, A. & Mukhopadhyay, S. Quantitative study on shoreline changes and Erosion Hazard assessment: Case study in Muriganga–Saptamukhi interfluve, Sundarban, India. Modeling Earth Syst. Environ. 2, (2016).

  • Halder, B., Ameen, A. M. S., Bandyopadhyay, J., Khedher, K. M. & Yaseen, Z. M. The impact of climate change on land degradation along with shoreline migration in Ghoramara Island, India. Phys. Chem. Earth Parts A/B/C. 103135 (2022).

  • Tao, H. et al. Artificial intelligence models for suspended river sediment prediction: State-of-the art, modeling framework appraisal, and proposed future research directions. Eng. Appl. Comput. Fluid Mech. 15, 1585–1612 (2021).

    Google Scholar 

  • Al-Mimar, H. S., Awadh, S. M., Al-Yaseri, A. A. & Yaseen, Z. M. Sedimentary units-layering system and depositional model of the carbonate Mishrif reservoir in Rumaila oilfield, Southern Iraq. Modeling Earth Syst. Environ. 4, 1449–1465 (2018).

    Article  Google Scholar 

  • Awadh, S. M., Al-Mimar, H. & Yaseen, Z. M. Groundwater availability and water demand sustainability over the upper mega aquifers of Arabian Peninsula and west region of Iraq. Environ. Development Sustain. https://doi.org/10.1007/s10668-019-00578-z (2020).

    Article  Google Scholar 

  • Liu, H., Sherman, D. & Gu, S. Automated extraction of shorelines from airborne light detection and ranging data and accuracy assessment based on monte carlo simulation. J. Coastal Res. 236, 1359–1369 (2007).

    Article  Google Scholar 

  • Natesan, U., Thulasiraman, N., Deepthi, K. & Kathiravan, K. Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India. Environ. Monit. Assess. 185, 5099–5109 (2012).

    PubMed  Article  CAS  Google Scholar 

  • Fletcher, C., Rooney, J., Barbee, M., Lim, S.-C. & Richmond, B. Mapping shoreline change using digital orthophotogrammetry on Maui, Hawaii. J. Coastal Res. 106–124 (2003).

  • Liu, H., Wang, L., Sherman, D. J., Wu, Q. & Su, H. Algorithmic foundation and software tools for extracting shoreline features from remote sensing imagery and LiDAR data. J. Geogr. Inf. Syst. 03, 99–119 (2011).

    Google Scholar 

  • White, S. A. & Wang, Y. Utilizing DEMs derived from LIDAR data to analyze morphologic change in the North Carolina coastline. Remote Sens. Environ. 85, 39–47 (2003).

    ADS  Article  Google Scholar 

  • Morton, R. A., Miller, T. & Moore, L. Historical shoreline changes along the US Gulf of Mexico: A summary of recent shoreline comparisons and analyses. J. Coastal Res. 214, 704–709 (2005).

    Article  Google Scholar 

  • AlFugura, A., Billa, L. & Pradhan, B. Semi-automated procedures for shoreline extraction using single RADARSAT-1 SAR image. Estuarine Coast. Shelf Sci. 95, 395–400 (2011).

    ADS  Article  Google Scholar 

  • Aarninkhof, S. G. J., Turner, I. L., Dronkers, T. D. T., Caljouw, M. & Nipius, L. A video-based technique for mapping intertidal beach bathymetry. Coast. Eng. 49, 275–289 (2003).

    Article  Google Scholar 

  • Thakur, S., Dharanirajan, K., Ghosh, P. B., Das, P. & De, T. K. Influence of anthropogenic activities on the landuse pattern of South Andaman Islands. Res. J. Mar. Sci. 5, 1–10 (2017).

    Google Scholar 

  • Baral, R., Pradhan, S., Samal, R. N. & Mishra, S. K. Shoreline change analysis at Chilika Lagoon Coast, India using digital shoreline analysis system. J. Indian Soc. Remote Sensing 46, 1637–1644 (2018).

    Article  Google Scholar 

  • Guariglia, A. et al. A multisource approach for coastline mapping and identification of shoreline changes. Ann. Geophys. 49, (2009).

  • Al-Hatrushi, S. M. Monitoring of the shoreline change using remote sensing and GIS: A case study of Al Hawasnah tidal inlet, Al Batinah coast, Sultanate of Oman. Arab. J. Geosci. 6, 1479–1484 (2012).

    Article  Google Scholar 

  • Cui, B.-L. & Li, X.-Y. Coastline change of the Yellow River estuary and its response to the sediment and runoff (1976–2005). Geomorphology 127, 32–40 (2011).

    ADS  Article  Google Scholar 

  • Durduran, S. S. Coastline change assessment on water reservoirs located in the Konya Basin Area, Turkey, using multitemporal landsat imagery. Environ. Monit. Assess. 164, 453–461 (2009).

    PubMed  Article  CAS  Google Scholar 

  • Halder, B., Haghbin, M. & Farooque, A. A. An assessment of urban expansion impacts on land transformation of Rajpur-Sonarpur Municipality. Knowl.-Based Eng. Sci. 2, 34–53 (2021).

    Article  Google Scholar 

  • Hashim, B. M., Al Maliki, A., Sultan, M. A., Shahid, S. & Yaseen, Z. M. Effect of land use land cover changes on land surface temperature during 1984–2020: A case study of Baghdad city using landsat image. Nat. Hazards. https://doi.org/10.1007/s11069-022-05224-y (2022).

    Article  Google Scholar 

  • Yao, R., Wang, L., Huang, X., Gong, W. & Xia, X. Greening in rural areas increases the surface urban heat island intensity. Geophys. Res. Lett. 46, 2204–2212 (2019).

    ADS  Article  Google Scholar 

  • Amiri, R., Weng, Q., Alimohammadi, A. & Alavipanah, S. K. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sens. Environ. 113, 2606–2617 (2009).

    ADS  Article  Google Scholar 

  • Weng, Q., Lu, D. & Schubring, J. Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sens. Environ. 89, 467–483 (2004).

    ADS  Article  Google Scholar 

  • Nandi, S., Ghosh, M., Kundu, A., Dutta, D. & Baksi, M. Shoreline shifting and its prediction using remote sensing and GIS techniques: A case study of Sagar Island, West Bengal (India). J. Coast. Conserv. 20, 61–80 (2015).

    Article  Google Scholar 

  • Hausmann, N. & Meredith-Williams, M. Seasonal patterns of coastal exploitation on the Farasan Islands, Saudi Arabia. J. Island Coast. Archaeol. 12, 360–379 (2016).

    Article  Google Scholar 

  • ESRI ArcGIS. Software V10.6. https://www.arcgis.com/index.html. Accessed 17 Mar 2022.

  • DIVA-GIS. https://www.diva-gis.org/. Accessed 15 Mar 2022.

  • Halder, B., Bandyopadhyay, J. & Banik, P. Assessment of hospital sites’ suitability by spatial information technologies using AHP and GIS-based multi-criteria approach of Rajpur-Sonarpur Municipality. Model. Earth Syst. Environ. 6, 2581–2596 (2020).

    Article  Google Scholar 

  • Song, C., Woodcock, C. E., Seto, K. C., Lenney, M. P. & Macomber, S. A. Classification and change detection using Landsat TM data: When and how to correct atmospheric effects?. Remote Sens. Environ. 75, 230–244 (2001).

    ADS  Article  Google Scholar 

  • Mather, P. M. & Koch, M. Comput. Process. Remotely-Sensed Images. (2011). https://doi.org/10.1002/9780470666517.

  • Khobragade, A. N. & Raghuwanshi, M. M. Data fusion algorithms for horticulture classification using multi-sensory satellite images. in 2014 Annual IEEE India Conference (INDICON) (2014). https://doi.org/10.1109/indicon.2014.7030408.

  • Lhissoui, R., Harti, A. E. & Chokmani, K. Mapping soil salinity in irrigated land using optical remote sensing data. Eurasian J. Soil Sci. (EJSS). 3, 82 (2014).

    Article  Google Scholar 

  • Shalaby, A. & Tateishi, R. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt. Appl. Geogr. 27, 28–41 (2007).

    Article  Google Scholar 

  • Cohen, J. L., Furtado, J. C., Barlow, M., Alexeev, V. A. & Cherry, J. E. Asymmetric seasonal temperature trends. Geophys. Res. Lett. 39 (2012).

  • Halder, B., Banik, P. & Bandyopadhyay, J. Mapping and monitoring land dynamic due to urban expansion using geospatial techniques on South Kolkata. Safety Extreme Environ. 3, 27–42 (2021).

    Article  Google Scholar 

  • Cheruto, M. C., Kauti, M. K., Kisangau, D. P. & Kariuki, P. C. Assessment of land use and land cover change using GIS and remote sensing techniques: A case study of Makueni County, Kenya. (2016).

  • Crowell, M., Douglas, B. C. & Leatherman, S. P. On forecasting future US Shoreline positions: A test of algorithms. J. Coastal Res. https://doi.org/10.1016/S0967-0653(98)80642-X (1997).

    Article  Google Scholar 

  • Sobrino, J. A. & Julien, Y. Global trends in NDVI-derived parameters obtained from GIMMS data. Int. J. Remote Sens. 32, 4267–4279 (2011).

    Article  Google Scholar 

  • Semenza, J. C. et al. Heat-related deaths during the July 1995 heat wave in Chicago. N. Engl. J. Med. 335, 84–90 (1996).

    CAS  PubMed  Article  Google Scholar 

  • Yu, X., Guo, X. & Wu, Z. Land surface temperature retrieval from Landsat 8 TIRS—Comparison between radiative transfer equation-based method, split window algorithm and single channel method. Remote Sensing 6, 9829–9852 (2014).

    ADS  Article  Google Scholar 

  • Roy, D. P. et al. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 145, 154–172 (2014).

    ADS  Article  Google Scholar 

  • Avdan, U. & Jovanovska, G. Algorithm for automated mapping of land surface temperature using LANDSAT 8 satellite data. J. Sensors. 2016, (2016).

  • Halder, B., Bandyopadhyay, J. & Banik, P. Monitoring the effect of urban development on urban heat island based on remote sensing and geo-spatial approach in Kolkata and adjacent areas, India. Sustain. Cities Soc. 74, 103186 (2021).

    Article  Google Scholar 

  • Zhang, Y., Odeh, I. O. A. & Han, C. Bi-temporal characterization of land surface temperature in relation to impervious surface area, NDVI and NDBI, using a sub-pixel image analysis. Int. J. Appl. Earth Obs. Geoinf. 11, 256–264 (2009).

    ADS  Google Scholar 

  • Ekercin, S. Coastline change assessment at the Aegean Sea Coasts in Turkey Using Multitemporal Landsat Imagery. J. Coastal Res. 233, 691–698 (2007).

    Article  Google Scholar 

  • Muslim, A., Foody, G. M. & Atkinson, P. M. Shoreline mapping from coarse-spatial resolution remote sensing imagery of Seberang Takir, Malaysia. J. Coast. Res. 236, 1399–1408 (2007).

    Article  Google Scholar 

  • Hereher, M. E. Mapping coastal erosion at the Nile Delta western promontory using Landsat imagery. Environ. Earth Sci. 64, 1117–1125 (2011).

    Article  Google Scholar 

  • Thao, P. T. P., Duan, H. D. & To, D. V. Integrated remote sensing and GIS for calculating shoreline change in Phan Thiet coastal area. in International Symposium on Geoinformatics for Spatial Infrastructure Development in Earth and Allied Sciences, Hanoi, Vietnam 1–6 (2008).

  • Yamano, H. et al. Evaluation of various satellite sensors for waterline extraction in a coral reef environment: Majuro Atoll, Marshall Islands. Geomorphology 82, 398–411 (2006).

    ADS  Article  Google Scholar 

  • Ryu, J., Won, J. & Min, K. Waterline extraction from Landsat TM data in a tidal flatA case study in Gomso Bay, Korea. Remote Sensing Environ. 83, 442–456 (2002).

    ADS  Article  Google Scholar 

  • Boak, E. H. & Turner, I. L. Shoreline definition and detection: A review. J. Coastal Res. 214, 688–703 (2005).

    Article  Google Scholar 

  • Kumar, A., Narayana, A. C., & Jayappa, K. S. Shoreline changes and morphology of spits along southern Karnataka, west coast of India: A remote sensing and statistics-based approach. Geomorphology 120(3–4), 133–152
    (2010).

    ADS  Article  Google Scholar 

  • AppeaningAddo, K., Jayson-Quashigah, P. N. & Kufogbe, K. S. Quantitative analysis of shoreline change using medium resolution satellite imagery in Keta, Ghana. Mar. Sci. 1, 1–9 (2012).

    Article  Google Scholar 

  • Yunus, A. P., Dou, J., Avtar, R. & Narayana, A. C. Shoreline and coastal morphological changes induced by the 2004 Indian Ocean Tsunami in the Katchal Island, Andaman and Nicobar—A study using archived satellite images. Tsunamis Earthq. Coast. Environ. https://doi.org/10.1007/978-3-319-28528-3_5 (2016).

    Article  Google Scholar 

  • Salghuna, N. N. & Bharathvaj, S. A. Shoreline change analysis for northern part of the coromandel coast. Aquatic Procedia 4, 317–324 (2015).

    Article  Google Scholar 

  • Thieler, E. R., Himmelstoss, E. A., Zichichi, J. L. & Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS extension for calculating shoreline change. Open-File Rep. https://doi.org/10.3133/ofr20081278 (2009).

    Article  Google Scholar 

  • Dolan, R., Fenster, M. S., & Holme, S. J. Temporal analysis of shoreline recession and accretion. J. Coast. Res. 723–744 (1991).

  • Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G. & Farris, A. S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide. (2018).

  • USGS Earth Explorer. https://earthexplorer.usgs.gov/. Accessed 3 Mar 2022.

  • Almalki, K. A., Betts, P. G. & Ailleres, L. Episodic sea-floor spreading in the Southern Red Sea. Tectonophysics 617, 140–149 (2014).

    ADS  Article  Google Scholar 

  • Almalki, K. A. & Bantan, R. A. Lithologic units and stratigraphy of the Farasan Islands, Southern Red Sea. Carbonates Evaporites. https://doi.org/10.1007/s13146-015-0247-4 (2016).

    Article  Google Scholar 

  • Pankratz, H. G. et al. Use of geophysical and radar interferometric techniques to monitor land deformation associated with the Jazan Salt Diapir, Jazan city, Saudi Arabia. Surveys Geophys. 42, 177–200 (2021).

    ADS  Article  Google Scholar 

  • Khalil, H. M., Fathy, M. S. & Sawy, S. M. Al. Author response for ‘Quaternary corals (Scleractinia: Merulinidae) from the Egyptian and Saudi Arabian Red Sea Coast’. (2021). https://doi.org/10.1002/gj.4145/v3/response1.

  • El-Serehy, H. A., Shafik, H., Abdallah, H. S., Al-Misned, F. A. & Al-Farraj, S. A. Complex interactions and different possible pathways among functional components of the aquatic microbial world in Farasan Archipelago, Southern Red Sea, Saudi Arabia. Saudi J. Biol. Sci. 27, 1412–1417 (2020).

    CAS  PubMed  Article  Google Scholar 

  • Al-Qthanin, R. N. & Alharbi, S. A. Spatial structure and genetic variation of a Mangrove species (Avicennia marina (Forssk.) Vierh) in the Farasan Archipelago. Forests 11, 1287 (2020).

    Article  Google Scholar 

  • Al-Qthanin, R. & Al-Yasi, H. Progress towards an updated checklist of the Farasan Archipelago flora. J. Arid Environ. 189, 104488 (2021).

    ADS  Article  Google Scholar 

  • Ali, A. & Al-Banna, E. Study of the archaeological building materials on Farasan Islands, Kingdom of Saudi Arabia, and their relationship with the islands’ local and climatic environment. Defence Sites III Heritage Future. https://doi.org/10.2495/dshf160091 (2016).

    Article  Google Scholar 

  • Almalki, K. A., Bantan, R. A., Hashem, H. I., Loni, O. A. & Ali, M. A. Improving geological mapping of the Farasan Islands using remote sensing and ground-truth data. J. Maps 13, 900–908 (2017).

    Article  Google Scholar 

  • Pavlopoulos, K. et al. Geomorphological changes in the coastal area of Farasan Al-Kabir Island (Saudi Arabia) since mid Holocene based on a multi-proxy approach. Quatern. Int. 493, 198–211 (2018).

    Article  Google Scholar 

  • Eid, E. M. et al. Evaluation of carbon stock in the sediment of two mangrove species, Avicennia marina and Rhizophora mucronata, growing in the Farasan Islands, Saudi Arabia. Oceanologia 62, 200–213 (2020).

    Article  Google Scholar 

  • Cunningham, P. L. & Wronski, T. Twenty years of monitoring of the Vulnerable Farasan gazelle Gazella gazella farasani on the Farasan Islands, Saudi Arabia: An overview. Oryx 45, 50–55 (2011).

    Article  Google Scholar 

  • Alawad, K. A., Al-Subhi, A. M., Alsaafani, M. A., Alraddadi, T. M., Ionita, M., & Lohmann, G. Large-scale mode impacts on the sea level over the Red Sea and Gulf of Aden. Remote Sens. 11(19), 2224 (2019).

    ADS  Article  Google Scholar 

  • Shamji, V. R., Aboobacker, V. M. & Vineesh, T. C. Extreme value analysis of wave climate around Farasan Islands, southern Red Sea. Ocean Eng. 207, 107395 (2020).

    Article  Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going