Uncategorized

Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii) | Communications Biology – Nature.com

  • Isaac, J. L. Effects of climate change on life history: Implications for extinction risk in mammals. Endanger. Species Res. 7, 115–123 (2009).

    Article  Google Scholar 

  • Tseng, M. et al. Decreases in beetle body size linked to climate change and warming temperatures. J. Anim. Ecol. 87, 647–659 (2018).

    PubMed  Article  Google Scholar 

  • Weeks, B. C. et al. Shared morphological consequences of global warming in North American migratory birds. Ecol. Lett. 23, 316–325 (2020).

    PubMed  Article  Google Scholar 

  • Ryding, S., Klaassen, M., Tattersall, G. J., Gardner, J. L. & Symonds, M. R. E. Shape-shifting: changing animal morphologies as a response to climatic warming. Trends Ecol. Evol. 36, 1036–1048 (2021).

  • Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Sci. (80-.). 370, 712–715 (2020).

    CAS  Article  Google Scholar 

  • Hällfors, M. H. et al. Shifts in timing and duration of breeding for 73 boreal bird species over four decades. Proc. Natl Acad. Sci. USA. 117, 18557–18565 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  • Cotton, P. A. Avian migration phenology and global climate change. Proc. Natl Acad. Sci. USA. 100, 12219–12222 (2003).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Horton, K. G. et al. Phenology of nocturnal avian migration has shifted at the continental scale. Nat. Clim. Chang. 10, 63–68 (2020).

    Article  Google Scholar 

  • Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: The role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180174 (2019).

  • Hoffmann, A. A. & Sgró, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).

    CAS  PubMed  Article  Google Scholar 

  • Ofori, B. Y., Stow, A. J., Baumgartner, J. B. & Beaumont, L. J. Influence of adaptive capacity on the outcome of climate change vulnerability assessment. Sci. Rep. 7, 1–12 (2017).

    CAS  Article  Google Scholar 

  • Promislow, D. E. L. & Harvey, P. H. Living fast and dying young: A comparative analysis of life-history variation among mammals. J. Zool. 220, 417–437 (1990).

    Article  Google Scholar 

  • Stearns, S. C. Life history evolution: Successes, limitations, and prospects. Naturwissenschaften 87, 476–486 (2000).

    CAS  PubMed  Article  Google Scholar 

  • Roff, D. Life History,Evolution of. In Encyclopedia of Biodiversity 3, 631–641 (Oxford University Press, Incorporated, 2002).

  • Williams, J. B., Miller, R. A., Harper, J. M. & Wiersma, P. Functional linkages for the pace of life, life-history, and environment in birds. Integr. Comp. Biol. 50, 855–868 (2010).

    PubMed  Article  PubMed Central  Google Scholar 

  • Gaillard, J. M. et al. Generation time: A reliable metric to measure life-history variation among mammalian populations. Am. Naturalist 166, 119–123 (2005).

    Article  Google Scholar 

  • Healy, K., Ezard, T. H. G., Jones, O. R., Salguero-Gómez, R. & Buckley, Y. M. Animal life history is shaped by the pace of life and the distribution of age-specific mortality and reproduction. Nat. Ecol. Evol. 3, 1217–1224 (2019).

    PubMed  Article  Google Scholar 

  • Araya-Ajoy, Y. G. et al. Demographic measures of an individual’s “pace of life”: fecundity rate, lifespan, generation time, or a composite variable? Behav. Ecol. Sociobiol. 72, (2018).

  • Krebs, C. J., Boonstra, R., Boutin, S. & Sinclair, A. R. E. What drives the 10-year cycle of snowshoe hares? Bioscience 51, 25–35 (2001).

    Article  Google Scholar 

  • Sand, H. Life History Patterns in Female Moose (Alces alces): The Relationship between Age, Body Size, Fecundity and Environmental Conditions. Oecologia 106, 212–220 (1996).

  • Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).

    PubMed  Article  Google Scholar 

  • Forchhammer, M. C., Clutton-Brock, T. H., Lindstrom, J. & Albon, S. D. Climate and Population Density Induce Long-Term Cohort Variation in a Northern Ungulate. J. Anim. Ecol. 70, 721–729 (2001).

    Article  Google Scholar 

  • Ghalambor, C. K., McKay, J. K., Carroll, S. P. & Reznick, D. N. Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments. Funct. Ecol. 21, 394–407 (2007).

    Article  Google Scholar 

  • Dietz, C., Nill, D. & Kiefer, A. Handbuch der Fledermäuse Europa und Nordwestafrika. (Franckh Kosmos Verlag, 2016).

  • Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).

    Article  Google Scholar 

  • Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 1–9 (2017).

    CAS  Article  Google Scholar 

  • Working Group I. Climate Change 2021: The Physical Science Basis. Ipcc (2021).

  • Bercovitch, F. B. & Berry, P. S. M. Life expectancy, maximum longevity and lifetime reproductive success in female Thornicroft’s giraffe in Zambia. Afr. J. Ecol. 55, 443–450 (2017).

    Article  Google Scholar 

  • Rhine, R. J., Norton, G. W. & Wasser, S. K. Lifetime reproductive success, longevity, and reproductive life history of female yellow baboons (Papio cynocephalus) of Mikumi National Park, Tanzania. Am. J. Primatol. 51, 229–241 (2000).

    CAS  PubMed  Article  Google Scholar 

  • Ransome, R. D. Earlier breeding shortens life in female greater horseshoe bats. Philos. Trans. R. Soc. B Biol. Sci. 350, 153–161 (1995).

    Article  Google Scholar 

  • IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press. Cambridge, United Kingdom New York, NY, USA https://doi.org/10.1017/9781009157896 (2021).

  • Green, W. C. H. & Rothstein, A. Trade-offs between growth and reproduction in female bison. Oecologia 86, 521–527 (1991).

    PubMed  Article  Google Scholar 

  • Jorgenson, J. T., Festa-Bianchet, M., Lucherini, M. & Wishart, W. D. Effects of body size, population density, and maternal characteristics on age at first reproduction in bighorn ewes. Can. J. Zool. 71, 2509–2517 (1993).

    Article  Google Scholar 

  • Williams, D. F. & Findley, J. S. Sexual size dimorphism in vespertilionid bats. Am. Midl. Nat. 102, 113–126 (1979).

    Article  Google Scholar 

  • Myers, P. Sexual dimorphism in size of vespertilionid bats. Am. Nat. 112, 701–711 (1978).

    Article  Google Scholar 

  • Jonasson, K. A. & Willis, C. K. R. Changes in body condition of hibernating bats support the thrifty female hypothesis and predict consequences for populations with white-nose syndrome. PLoS One 6, e21061 (2011).

  • Kunz, T. H., Wrazen, J. A. & Burnett, C. D. Changes in body mass and fat reserves in pre-hibernating little brown bats (Myotis lucifugus). Écoscience 5, 8–17 (1998).

    Article  Google Scholar 

  • Pretzlaff, I., Kerth, G. & Dausmann, K. H. Communally breeding bats use physiological and behavioural adjustments to optimise daily energy expenditure. Naturwissenschaften 97, 353–363 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  • Kuepper, N. D., Melber, M. & Kerth, G. Nightly clustering in communal roosts and the regular presence of adult females at night provide thermal benefits for juvenile Bechstein’s bats. Mamm. Biol. 81, 201–204 (2016).

    Article  Google Scholar 

  • Willis, C. K. R. & Brigham, R. M. Social thermoregulation exerts more influence than microclimate on forest roost preferences by a cavity-dwelling bat. Behav. Ecol. Sociobiol. 62, 97–108 (2007).

    Article  Google Scholar 

  • Lemaître, J. F. et al. Early-late life trade-offs and the evolution of ageing in the wild. Proc. R. Soc. B Biol. Sci. 282, 20150209 (2015).

  • Wilkinson, G. S. & South, J. M. Life history, ecology and longevity in bats. Aging Cell 1, 124–131 (2002).

    CAS  PubMed  Article  Google Scholar 

  • Saino, N. et al. A trade-off between reproduction and feather growth in the barn swallow (Hirundo rustica). PLoS One 9, e96428 (2014).

  • Folkvord, A. et al. Trade-offs between growth and reproduction in wild Atlantic cod. Can. J. Fish. Aquat. Sci. 71, 1106–1112 (2014).

    Article  Google Scholar 

  • Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade‐offs in long‐lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).

    PubMed  Article  PubMed Central  Google Scholar 

  • Lansing, A. I. A transmissible, cumulative, and reversible factor in aging. J. Gerontol. 2, 228–239 (1947).

    CAS  PubMed  Article  Google Scholar 

  • Monaghan, P., Maklakov, A. A. & Metcalfe, N. B. Intergenerational Transfer of Ageing: Parental Age and Offspring Lifespan. Trends Ecol. Evol. 35, 927–937 (2020).

    PubMed  Article  Google Scholar 

  • Sharpe, D. M. T. & Hendry, A. P. Life history change in commercially exploited fish stocks: An analysis of trends across studies. Evol. Appl. 2, 260–275 (2009).

    PubMed  Article  PubMed Central  Google Scholar 

  • Kuparinen, A., Boit, A., Valdovinos, F. S., Lassaux, H. & Martinez, N. D. Fishing-induced life-history changes degrade and destabilize harvested ecosystems. Sci. Rep. 6, 1–9 (2016).

    Article  CAS  Google Scholar 

  • Kuparinen, A. & Festa-Bianchet, M. Harvest-induced evolution: Insights from aquatic and terrestrial systems. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160036 (2017).

  • Ghazy, N. A., Gotoh, T. & Suzuki, T. Impact of global warming scenarios on life-history traits of Tetranychus evansi (Acari: Tetranychidae). BMC Ecol. 19, 1–12 (2019).

    Article  Google Scholar 

  • Wang, H. Y., Shen, S. F., Chen, Y. S., Kiang, Y. K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).

    Article  CAS  Google Scholar 

  • Adamo, S. A. & Lovett, M. M. E. Some like it hot: The effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J. Exp. Biol. 214, 1997–2004 (2011).

    PubMed  Article  Google Scholar 

  • Kerth, G., Safi, K. & König, B. Mean colony relatedness is a poor predictor of colony structure and female philopatry in the communally breeding Bechstein’s bat (Myotis bechsteinii). Behav. Ecol. Sociobiol. 52, 203–210 (2002).

    Article  Google Scholar 

  • Kerth, G., Perony, N. & Schweitzer, F. Bats are able to maintain long-term social relationships despite the high fission-fusion dynamics of their groups. Proc. R. Soc. B Biol. Sci. 278, 2761–2767 (2011).

    Article  Google Scholar 

  • Fleming, T. H. The relationship between body size, diet, and habitat use in frugivorous bats, genus Carollia (Phyllostomidae). J. Mammal. 72, 493–501 (1991).

    Article  Google Scholar 

  • Bayerische Landesanstalt für Wald und Forstwirtschaft (LWF). Data base for meteorological data, individual values averaged.

  • DWD Climate Data Center (CDC). Historische und aktuelle 10-minütige Stationsmessungen: 1) der mittleren Windgeschwindigkeit und Windrichtung in Deutschland (Version recent, 2019); 2) des Luftdrucks, der Lufttemperatur (in 5cm und 2m Höhe), der Luftfeuchte.

  • Kerth, G., Mayer, F. & Petit, E. Extreme sex-biased dispersal in the communally breeding, nonmigratory Bechstein’s bat (Myotis bechsteinii). Mol. Ecol. 11, 1491–1498 (2002).

    CAS  PubMed  Article  Google Scholar 

  • van Schaik, J., Dekeukeleire, D., Gazaryan, S., Natradze, I. & Kerth, G. Comparative phylogeography of a vulnerable bat and its ectoparasite reveals dispersal of a non-mobile parasite among distinct evolutionarily significant units of the host. Conserv. Genet. 19, 481–494 (2018).

    Article  Google Scholar 

  • Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).

    PubMed  Article  Google Scholar 

  • Wang, J. Coancestry: A program for simulating, estimating and analysing relatedness and inbreeding coefficients. Mol. Ecol. Resour. 11, 141–145 (2011).

    PubMed  Article  Google Scholar 

  • Gotelli, N. J. A Primer of Ecology. (Sinauer Associates, 2008).

  • Steiner, U. K., Tuljapurkar, S. & Coulson, T. Generation time, net reproductive rate, and growth in stage-age-structured populations. Am. Nat. 183, 771–783 (2014).

    PubMed  Article  PubMed Central  Google Scholar 

  • Van De Pol, M. & Verhulst, S. Age ‐ Dependent Traits: A New Statistical Model to Separate Within ‐ and Between ‐ Individual Effects. Am. Nat. 167, 766–773 (2006).

    PubMed  Article  Google Scholar 

  • Core Development Team, R. A Language and Environment for Statistical Computing. R Foundation for Statistical Computing 2, https://www.R-project.org (2021).

  • Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).

    Article  Google Scholar 

  • Delignette-Muller, M. L. & Dutang, C. fitdistrplus: An R package for fitting distributions. J. Stat. Softw. 64, 1–34 (2015).

    Article  Google Scholar 

  • Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Contr. 19, 716–723 (1974).

    Article  Google Scholar 

  • Bonenfant, C. et al. Empirical Evidence of Density-Dependence in Populations of Large Herbivores. Adv. Ecol. Res. 41, 313–357 (2009).

    Article  Google Scholar 

  • Mundinger, C., Scheuerlein, A., Kerth, G. & Fleischer, T. Code and source data for the paper: Global warming leads to larger bats with a faster life history pace in the long-lived Bechstein’s bat (Myotis bechsteinii). https://doi.org/10.5281/zenodo.6543599 (2022).

  • LEAVE A RESPONSE

    Please help keep this Site Going