Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Global warming is shifting the relationships between fire weather and realized fire-induced CO2 emissions in Europe | Scientific Reports – Nature.com

  • Jolly, W. M. et al. Climate-induced variations in global wildfire danger from 1979 to 2013. Nat. Commun. 6, 1–11 (2015).

    CAS  Article  Google Scholar 

  • Abatzoglou, J. T., Williams, A., Boschetti, L., Zubkova, M. & Kolden, C. A. Global patterns of interannual climate-fire relationships. Glob. Change Biol. 24, 5164–5175 (2018).

    ADS  Article  Google Scholar 

  • Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 33, L08707 (2006).

    ADS  Article  Google Scholar 

  • Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • IPCC In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge University Press, 2021).

    Google Scholar 

  • Dupuy, J. et al. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. For. Sci. 77, 35 (2020).

    Article  Google Scholar 

  • Turco, M. et al. Decreasing fires in mediterranean Europe. PLoS ONE 11, e0150663 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Turco, M. et al. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 9, 1–9 (2018).

    Article  CAS  Google Scholar 

  • Ruffault, J. et al. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 10, 13790 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Moreira, F. et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 15, 011001 (2020).

    ADS  Article  Google Scholar 

  • Di Giuseppe, F. et al. Fire Weather Index: The skill provided by the European Centre for Medium-Range Weather Forecasts ensemble prediction system. Nat. Hazards Earth Syst. Sci. 20, 2365–2378 (2020).

    ADS  Article  Google Scholar 

  • Van Wagner, C. E. Development and structure of the Canadian forest fireweather index system. Canadian Forestry Service, Forestry Technical Report 35 (1987).

  • de Groot, W. J. et al. Development of the Indonesian and Malaysian fire danger rating systems. Mitig. Adapt. Strat. Global Change. 12, 165–180 (2007).

    Article  Google Scholar 

  • Venäläinen, A. et al. Temporal variations and change in forest fire danger in Europe for 1960–2012. Nat. Hazards Earth Syst. Sci. 14, 1477–1490 (2014).

    ADS  Article  Google Scholar 

  • Bowman, D. M. et al. Human exposure and sensitivity to globally extreme wildfire events. Nat. Ecol. Evol. 1, 1–6 (2017).

    Article  Google Scholar 

  • Abatzoglou, J. T. et al. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 46, 326–336 (2019).

    ADS  Article  Google Scholar 

  • Jain, P. et al. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Change 12, 63–70 (2022).

    ADS  Article  Google Scholar 

  • Calheiros, T. et al. Recent evolution of spatial and temporal patterns of burnt areas and fire weather risk in the Iberian Peninsula. Agr. For. Meteorol. 287, 107923 (2020).

    Article  Google Scholar 

  • Abatzoglou, J. T. et al. Increasing synchronous fire danger in forests of the western United States. Geophys. Res. Lett. 48, e2020GL091377 (2021).

    ADS  Google Scholar 

  • Kaiser, J. W. et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9, 527–554 (2012).

    ADS  CAS  Article  Google Scholar 

  • Peuch, V. H. et al. The use of satellite data in the Copernicus atmosphere monitoring service. In IEEE International Geoscience and Remote Sensing Symposium (ed Moreno, J.) 1594–1596 (IEEE, 2018).

  • Carnicer, J. et al. Regime shifts of Mediterranean forest carbon uptake and reduced resilience driven by multidecadal ocean surface temperatures. Glob. Change Biol. 25, 2825–2840 (2019).

    ADS  Article  Google Scholar 

  • Williams, A. P. et al. Observed impacts of anthropogenic climate change on wildfire in California. Earth’s Fut. 7, 892–910 (2019).

    ADS  Article  Google Scholar 

  • Rogers, B. M. et al. Focus on changing fire regimes: Interactions with climate, ecosystems, and society. Environ. Res. Lett. 15, 030201 (2020).

    ADS  Article  Google Scholar 

  • Duane, A. et al. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 1–21 (2021).

    ADS  Article  Google Scholar 

  • Ellis, T. M. et al. Global increase in wildfire risk due to climate-driven declines in fuel moisture. Glob. Change Biol. 28, 1544–1559 (2022).

    Article  Google Scholar 

  • Grassi, G. et al. On the realistic contribution of European forests to reach climate objectives. Carbon Balance Manag. 14, 1–5 (2019).

    CAS  Article  Google Scholar 

  • Pilli, R., Alkama, R., Cescatti, A., Kurz, W. A. & Grassi, G. The European forest Carbon budget under future climate conditions and current management practices. Biogeosci. Discuss. 1, 33 (2022).

    Google Scholar 

  • Migliavacca, M. et al. Modeling biomass burning and related carbon emissions during the 21st century in Europe. J. Geophys. Res. Biogeosci. 118, 1732–1747 (2013).

    CAS  Article  Google Scholar 

  • Resco de Dios, V. et al. Climate change induced declines in fuel moisture may turn currently fire-free Pyrenean mountain forests into fire-prone ecosystems. Sci. Total Environ. 797, 149104 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Pausas, J. G. & Keeley, J. E. Wildfires and global change. Front. Ecol. Environ. 19, 387–395 (2021).

    Article  Google Scholar 

  • Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).

    PubMed  Article  Google Scholar 

  • Wang, S. et al. Recent global decline of CO2 fertilization effects on vegetation photosynthesis. Science 370, 1295–1300 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    ADS  CAS  Article  Google Scholar 

  • Forzieri, G. et al. Vulnerability of European forests to climate risks. Geophys. Res. Abstr. 21, 1 (2019).

    Google Scholar 

  • Senf, C. & Seidl, R. Mapping the forest disturbance regimes of Europe. Nat. Sustain. 4, 63–70 (2021).

    Article  Google Scholar 

  • Carnicer, J. et al. Forest resilience to global warming is strongly modulated by local-scale topographic, microclimatic and biotic conditions. J. Ecol. 109, 3322–3339 (2021).

    Article  Google Scholar 

  • Sanginés de Cárcer, P. et al. Vapor–pressure deficit and extreme climatic variables limit tree growth. Glob. Change Biol. 24, 1108–1122 (2018).

    ADS  Article  Google Scholar 

  • Yuan, W. et al. Increased atmospheric vapor pressure deficit reduces global vegetation growth. Sci. Adv. 5, eaax1396 (2019).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Carnicer, J., Barbeta, A., Sperlich, D., Coll, M. & Peñuelas, J. Contrasting trait syndromes in angiosperms and conifers are associated with different responses of tree growth to temperature on a large scale. Front. Plant Sci. 4, 409 (2013).

    PubMed  PubMed Central  Article  Google Scholar 

  • Lee, H. et al. Implementing land-based mitigation to achieve the Paris Agreement in Europe requires food system transformation. Environ. Res. Lett. 14, 104009 (2019).

    ADS  CAS  Article  Google Scholar 

  • Bednar-Friedl, B. et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC-WMO.

  • Luyssaert, S. et al. Trade-offs in using European forests to meet climate objectives. Nature 562, 259–262 (2018).

    ADS  CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Nabuurs, G. J. et al. By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests 8, 484 (2017).

    Article  Google Scholar 

  • Vizzarri, M., Pilli, R., Korosuo, A., Frate, L. & Grassi, G. The role of forests in climate change mitigation: The EU context. In Climate-Smart Forestry in Mountain Regions (eds Tognetti, R. et al.) 507–520 (Springer, 2022).

    Chapter  Google Scholar 

  • Tognetti, R., Smith, M. & Panzacchi, P. Climate-Smart Forestry in Mountain Regions 574 (Springer, 2022).

    Book  Google Scholar 

  • Ali, E. et al. Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. IPCC-WMO.

  • IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press) (in press).

  • Boer, M. M. et al. Changing weather extremes call for early warning of potential for catastrophic fire. Earth’s Fut. 5, 1196–1202 (2017).

    ADS  Article  Google Scholar 

  • Drobyshev, I. et al. Trends and patterns in annually burned forest areas and fire weather across the European boreal zone in the 20th and early 21st centuries. Agric. For. Meteorol. 306, 108467 (2021).

    ADS  Article  Google Scholar 

  • Chen, Y., Morton, D. C., Andela, N., Giglio, L. & Randerson, J. T. How much global burned area can be forecast on seasonal time scales using sea surface temperatures?. Environ. Res. Lett. 11, 045001 (2016).

    ADS  Article  Google Scholar 

  • McCarty, J. L., Smith, T. E. & Turetsky, M. R. Arctic fires re-emerging. Nat. Geosci. 13, 658–660 (2020).

    ADS  CAS  Article  Google Scholar 

  • Witze, A. The Arctic is burning like never before—And that’s bad news for climate change. Nature 585, 336–338 (2020).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Scholten, R. C., Jandt, R., Miller, E. A., Rogers, B. M. & Veraverbeke, S. Overwintering fires in boreal forests. Nature 593, 399–404 (2021).

    ADS  CAS  PubMed  Article  Google Scholar 

  • Smith, T., McCarty, J., Turetsky, M. & Parrington, M. Geospatial analysis of Arctic fires in the MODIS era: 2003–2020. In EGU General Assembly Conference Abstracts (2021).

  • Lehtonen, I., Venäläinen, A., Kämäräinen, M., Peltola, H. & Gregow, H. Risk of large-scale fires in boreal forests of Finland under changing climate. Nat. Hazards Earth Syst. Sci. 16, 239–253 (2016).

    ADS  Article  Google Scholar 

  • Fernandes, P. M., Pereira Pacheco, A., Almeida, R. & Claro, J. The role of fire-suppression force in limiting the spread of extremely large forest fires in Portugal. Eur. J. For. Res. 135, 253–262 (2016).

    Article  Google Scholar 

  • Vitolo, C. et al. ERA5-based global meteorological wildfire danger maps. Sci. Data 7, 216 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  • San-Miguel-Ayanz, M. et al. In Comprehensive Monitoring of Wildfires in Europe: The European Forest Fire Information System (EFFIS) (ed. Tiefenbacher, J.) 87–108 (InTech, Croatia, 2012).

    Google Scholar 

  • Harvey, D. A., Alexander, M. E. & Janz, B. A comparison of fire-weather severity in northern Alberta during the 1980 and 1981 fire seasons. For. Chron. 62, 507–513 (1986).

    Article  Google Scholar 

  • Copernicus Climate Change Service. Fire Danger Indicators for Europe from 1970 to 2098 Derived from Climate Projections (2020). https://doi.org/10.24381/CDS.CA755DE7.

  • Flannigan, M. D. et al. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Change 134, 59–71 (2016).

    ADS  CAS  Article  Google Scholar 

  • Fargeon, H. et al. Projections of fire danger under climate change over France: Where do the greatest uncertainties lie?. Clim. Change 160, 479–493 (2020).

    ADS  Article  Google Scholar 

  • Rovithakis, A. et al. Future climate change impact on wildfire danger over the Mediterranean: The case of Greece. Environ. Res. Lett. 17, 045022 (2022).

    ADS  Article  Google Scholar 

  • Iturbide, M. et al. An update of IPCC climate reference regions for subcontinental analysis of climate model data: Definition and aggregated datasets. Earth Syst. Sci. Data 12, 2959–2970 (2020).

    ADS  Article  Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going