Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Incorporation of novel foods in European diets can reduce global warming potential, water use and land use by over 80% – Nature.com

  • The State of Food and Agriculture (FAO, 2019); http://www.fao.org/3/ca6030en/ca6030en.pdf

  • Campbell, B. M. et al. Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecol. Soc. 22, 8 (2017).

  • Crippa, M. et al. Food systems are responsible for a third of global anthropogenic GHG emissions. Nat. Food 2, 198–209 (2021).

  • Double-Duty Actions for Nutrition: Policy Brief (World Health Organization, 2017).

  • Springmann, M. et al. Health and nutritional aspects of sustainable diet strategies and their association with environmental impacts: a global modelling analysis with country-level detail. Lancet Planet. Health 2, e451–e461 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Clark, M. A., Springmann, M., Hill, J. & Tilman, D. Multiple health and environmental impacts of foods. Proc. Natl Acad. Sci. USA 116, 23357–23362 (2019).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Willett, W. et al. Food in the Anthropocene: the EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 393, 447–492 (2019).

  • Parodi, A. et al. The potential of future foods for sustainable and healthy diets. Nat. Sustain. 1, 782–789 (2018).

    Article  Google Scholar 

  • Post, M. J. et al. Scientific, sustainability and regulatory challenges of cultured meat. Nat. Food 1, 403–415 (2020).

    Article  Google Scholar 

  • Onwezen, M. C., Bouwman, E. P., Reinders, M. J. & Dagevos, H. A systematic review on consumer acceptance of alternative proteins: pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 159, 105058 (2021).

    CAS  Article  PubMed  Google Scholar 

  • Kim, B. F. et al. Country-specific dietary shifts to mitigate climate and water crises. Glob. Environ. Change 62, 101926 (2019).

  • Perignon, M. et al. How low can dietary greenhouse gas emissions be reduced without impairing nutritional adequacy, affordability and acceptability of the diet? A modelling study to guide sustainable food choices. Public Health Nutr. 19, 2662–2674 (2016).

    Article  PubMed  Google Scholar 

  • Springmann, M., Godfray, H. C. J., Rayner, M. & Scarborough, P. Analysis and valuation of the health and climate change cobenefits of dietary change. Proc. Natl Acad. Sci. USA 113, 4146–4151 (2016).

    CAS  Article  ADS  PubMed  PubMed Central  Google Scholar 

  • Saxe, H., Larsen, T. M. & Mogensen, L. The global warming potential of two healthy Nordic diets compared with the average Danish diet. Climatic Change 116, 249–262 (2013).

    Article  ADS  Google Scholar 

  • Ulaszewska, M. M., Luzzani, G., Pignatelli, S. & Capri, E. Assessment of diet-related GHG emissions using the environmental hourglass approach for the Mediterranean and new Nordic diets. Sci. Total Environ. 574, 829–836 (2017).

    CAS  Article  ADS  PubMed  Google Scholar 

  • van Dooren, C., Marinussen, M., Blonk, H., Aiking, H. & Vellinga, P. Exploring dietary guidelines based on ecological and nutritional values: a comparison of six dietary patterns. Food Policy 44, 36–46 (2014).

    Article  Google Scholar 

  • Mertens, E. et al. Dietary choices and environmental impact in four European countries. J. Clean. Prod. 237, 117827 (2019).

    Article  Google Scholar 

  • Vieux, F., Perignon, M., Gazan, R. & Darmon, N. Dietary changes needed to improve diet sustainability: are they similar across Europe? Eur. J. Clin. Nutr. 72, 951–960 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazan, R. et al. Mathematical optimization to explore tomorrow’s sustainable diets: a narrative review. Adv. Nutr. 9, 602–616 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Meier, T. & Christen, O. Environmental impacts of dietary recommendations and dietary styles: Germany as an example. Environ. Sci. Technol. 47, 877–888 (2013).

    CAS  Article  ADS  PubMed  Google Scholar 

  • van Kernebeek, H. R. J., Oosting, S. J., van Ittersum, M. K., Bikker, P. & de Boer, I. J. M. Saving land to feed a growing population: consequences for consumption of crop and livestock products. Int. J. Life Cycle Assess. 21, 677–687 (2016).

  • Gephart, J. A. et al. The environmental cost of subsistence: optimizing diets to minimize footprints. Sci. Total Environ. 553, 120–127 (2016).

    CAS  Article  ADS  PubMed  Google Scholar 

  • Wilson, N., Cleghorn, C. L., Cobiac, L. J., Mizdrak, A. & Nghiem, N. Achieving healthy and sustainable diets: a review of the results of recent mathematical optimization studies. Adv. Nutr. 10, S389–S403 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Röös, E. et al. Greedy or needy? Land use and climate impacts of food in 2050 under different livestock futures. Glob. Environ. Change 47, 1–12 (2017).

    Article  Google Scholar 

  • Tyszler, M., Kramer, G. & Blonk, H. Just eating healthier is not enough: studying the environmental impact of different diet scenarios for Dutch women (31–50 years old) by linear programming. Int. J. Life Cycle Assess. 21, 701–709 (2016).

    Article  Google Scholar 

  • Thornton, P. K. Livestock production: recent trends, future prospects. Phil. Trans. R. Soc. B 365, 2853–2867 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cobiac, L. J. & Scarborough, P. Modelling the health co-benefits of sustainable diets in the UK, France, Finland, Italy and Sweden. Eur. J. Clin. Nutr. 73, 624–633 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Siegrist, M. & Hartmann, C. Perceived naturalness, disgust, trust and food neophobia as predictors of cultured meat acceptance in ten countries. Appetite 155, 104814 (2020).

    Article  PubMed  Google Scholar 

  • Tzachor, A., Richards, C. E. & Holt, L. Future foods for risk-resilient diets. Nat. Food 2, 326–329 (2021).

  • Bryant, C. & Barnett, J. Consumer acceptance of cultured meat: an updated review (2018–2020). Appl. Sci. 10, 5201 (2020).

  • Gazan, R. et al. A methodology to compile food metrics related to diet sustainability into a single food database: application to the French case. Food Chem. 238, 125–133 (2018).

    CAS  Article  PubMed  Google Scholar 

  • O’Mahony, C. & Vilone, G. Compiled European food consumption database. EFSA Support. Publ. 10, 415E (2013).

    Google Scholar 

  • The EFSA Comprehensive European Food Consumption Database—European Union Open Data Portal v.2020 (EFSA, 2018); https://data.europa.eu/euodp/en/data/dataset/the-efsa-comprehensive-european-food-consumption-database

  • FoodData Central (USDA, 2018); https://ndb.nal.usda.gov/index.html

  • ISO 14040: Environmental Management—Life Cycle Assessment—Principles and Framework (International Organization for Standardization, 2006).

  • Guinee, J. B. et al. Life cycle assessment: past, present, and future. ACS Publ. 45, 90–96 (2011).

  • AGRIBALYSE 3.0: Agricultural and Food Database for French Products and Food LCA v.2020 (French Agency for Ecological Transition, 2020); https://simapro.com/products/agribalyse-agricultural-database/

  • OpenLCA v.1.10.3 (GreenDelta, 2007)

  • LCIA: The ReCiPe Model (National Institute for Public Health and the Environment Netherlands, 2011); https://www.rivm.nl/en/life-cycle-assessment-lca/recipe

  • Boulay, A.-M. et al. The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). Int. J. Life Cycle Assess. 23, 368–378 (2018).

    Article  Google Scholar 

  • Voutilainen, E., Pihlajaniemi, V. & Parviainen, T. Economic comparison of food protein production with single-cell organisms from lignocellulose side-streams. Bioresour. Technol. Rep. 14, 100683 (2021).

  • Järviö, N., Maljanen, N.-L., Kobayashi, Y., Ryynänen, T. & Tuomisto, H. L. An attributional life cycle assessment of microbial protein production: a case study on using hydrogen-oxidizing bacteria. Sci. Total Environ. 776, 145764 (2021).

  • Smetana, S., Sandmann, M., Rohn, S., Pleissner, D. & Heinz, V. Autotrophic and heterotrophic microalgae and cyanobacteria cultivation for food and feed: life cycle assessment. Bioresour. Technol. 245, 162–170 (2017).

    CAS  Article  PubMed  Google Scholar 

  • Smetana, S., Schmitt, E. & Mathys, A. Sustainable use of Hermetia illucens insect biomass for feed and food: attributional and consequential life cycle assessment. Resour. Conserv. Recycl. 144, 285–296 (2019).

    Article  Google Scholar 

  • Kobyashi, Y. & Tuomisto, H. L. Plant cell culture life cycle analysis. Environ. Sci. Technol. (in the press).

  • Järviö, N. et al. Ovalbumin production using Trichoderma reesei culture and low-carbon energy could mitigate the environmental impacts of chicken-egg-derived ovalbumin. Nat. Food 2, 1005–1013 (2021).

  • Tuomisto, H. L., Allan, S. J. & Ellis, M. J. Prospective life cycle assessment of a complete bioprocess design for cultured meat production in hollow fiber bioreactor. Nat. Food (in the press).

  • Comparative GHG Emissions Assessment of Perfect Day Whey Protein Production to Dairy Protein (Perfect Day, 2021).

  • SimaPro v.9.1.1 (PRé Consultants, 2020).

  • Karlsson Potter, H., Lundmark, L. & Röös, E. Environmental Impact of Plant-Based Foods – Data Collection for the Development of a Consumer Guide for Plant-Based Foods (Swedish University of Agricultural Sciences, SLU, 2020); https://pub.epsilon.slu.se/17699/1/Report112.pdf

  • Jolliet, O. et al. IMPACT 2002: a new life cycle impact assessment methodology. Int. J. Life Cycle Assess. 8, 324–330 (2003).

    Article  Google Scholar 

  • Yang, X. in From Linear Programming to Metaheuristics 67-78 (Cambridge International Science Publishing Ltd., 2008).

  • Nordic Council of Ministers Nordic Nutrition Recommendations 2012: Integrating Nutrition and Physical Activity (Nordisk Ministerråd, 2014).

  • Protein and Amino Acid Requirements in Human Nutrition World Health Organization Technical Report Series 1 (FAO/WHO, 2007).

  • European Food Safety Administration. Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J. 10, 2579 (2012).

  • Siva Kiran, R. R., Madhu, G. M. & Satyanarayana, S. V. Spirulina in combating protein energy malnutrition (PEM) and protein energy wasting (PEW)—a review. J. Nutr. Res. 3, 62–79 (2015).

    Google Scholar 

  • Nordlund, E. et al. Plant cells as food—a concept taking shape. Food Res. Int. 107, 297–305 (2018).

    CAS  Article  PubMed  Google Scholar 

  • Cherry, P., O’hara, C., Magee, P. J., Mcsorley, E. M. & Allsopp, P. J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 77, 307–329 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Elorinne, A.-L. et al. Food and nutrient intake and nutritional status of Finnish vegans and non-vegetarians. PLoS ONE 11, e0148235 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  • Heijungs, R. On the number of Monte Carlo runs in comparative probabilistic LCA. Int. J. Life Cycle Assess. 25, 394–402 (2020).

    CAS  Article  Google Scholar 

  • Henriksson, P. J. G., Zhang, W. & Guinée, J. B. Updated unit process data for coal-based energy in China including parameters for overall dispersions. Int. J. Life Cycle Assess. 20, 185–195 (2015).

    CAS  Article  Google Scholar 

  • Karlsson, J. O., Carlsson, G., Lindberg, M., Sjunnestrand, T. & Röös, E. Designing a future food vision for the Nordics through a participatory modeling approach. Agron. Sustain. Dev. 38, pp.1–10 (2018).

  • Eustachio Colombo, P., Patterson, E., Lindroos, A. K., Parlesak, A. & Elinder, L. S. Sustainable and acceptable school meals through optimization analysis: an intervention study. Nutr. J. 19, 1–15 (2020).

    Article  Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going