Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Sea ice loss of the Barents-Kara Sea enhances the winter warming over the Tibetan Plateau | npj Climate and Atmospheric Science – Nature.com

  • Qiu, J. China: The third pole. Nature 454, 393–396 (2008).

    Google Scholar 

  • Bolch, T. et al. The state and fate of himalayan glaciers. Science 336, 310–314 (2012).

    Google Scholar 

  • Yao, T. et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 100, 423–444 (2019).

    Google Scholar 

  • Immerzeel, W. W., Van Beek, L. P. H. & Bierkens, M. F. P. Climate change will affect the asian water towers. Science 328, 1382–1385 (2010).

    Google Scholar 

  • Zhao, Y. & Zhou, T. Asian water tower evinced in total column water vapor: a comparison among multiple satellite and reanalysis data sets. Clim. Dyn. 54, 231–245 (2020).

    Google Scholar 

  • Duan, A., Hu, D., Hu, W. & Zhang, P. Precursor effect of the Tibetan Plateau heating anomaly on the seasonal March of the East Asian Summer Monsoon precipitation. J. Geophys. Res. Atmos. 125, 1–20 (2020).

    Google Scholar 

  • Sun, R. et al. Interannual variability of the north Pacific mixed layer associated with the spring tibetan plateau thermal forcing. J. Clim. 32, 3109–3130 (2019).

    Google Scholar 

  • Liu, Y. et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts. Natl Sci. Rev. 7, 534–552 (2020).

    Google Scholar 

  • Duan, A., Wu, G., Liu, Y., Ma, Y. & Zhao, P. Weather and climate effects of the Tibetan Plateau. Adv. Atmos. Sci. 29, 978–992 (2012).

    Google Scholar 

  • You, Q. et al. Warming amplification over the Arctic Pole and Third Pole: trends, mechanisms and consequences. Earth Sci. Rev. 217, 103625 (2021).

    Google Scholar 

  • Ma, J. et al. The dominant role of snow/ice Albedo feedback strengthened by black carbon in the enhanced warming over the Himalayas. J. Clim. 32, 5883–5899 (2019).

    Google Scholar 

  • Duan, A. & Xiao, Z. Does the climate warming hiatus exist over the Tibetan Plateau? Sci. Rep. 5, 13711 (2015).

    Google Scholar 

  • You, Q., Kang, S., Aguilar, E. & Yan, Y. Changes in daily climate extremes in the eastern and central Tibetan Plateau during 1961–2005. J. Geophys. Res. Atmos. 113, 1–17 (2008).

    Google Scholar 

  • Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Chang. 2, 663–667 (2012).

    Google Scholar 

  • Guo, D. & Wang, H. The significant climate warming in the northern Tibetan Plateau and its possible causes. Int. J. Climatol. 32, 1775–1781 (2012).

    Google Scholar 

  • Rangwala, I., Miller, J. R., Russell, G. L. & Xu, M. Using a global climate model to evaluate the influences of water vapor, snow cover and atmospheric aerosol on warming in the Tibetan Plateau during the twenty-first century. Clim. Dyn. 34, 859–872 (2010).

    Google Scholar 

  • Gao, K., Duan, A., Chen, D. & Wu, G. Surface energy budget diagnosis reveals possible mechanism for the different warming rate among Earth’s three poles in recent decades. Sci. Bull. 64, 1140–1143 (2019).

    Google Scholar 

  • You, Q., Min, J. & Kang, S. Rapid warming in the tibetan plateau from observations and CMIP5 models in recent decades. Int. J. Climatol. 36, 2660–2670 (2016).

    Google Scholar 

  • You, Q. et al. Climate warming and associated changes in atmospheric circulation in the eastern and central Tibetan Plateau from a homogenized dataset. Glob. Planet. Change 72, 11–24 (2010).

    Google Scholar 

  • Zhang, X., Peng, L., Zheng, D. & Tao, J. Cloudiness variations over the Qinghai-Tibet Plateau during 1971-2004. J. Geogr. Sci. 18, 142–154 (2008).

    Google Scholar 

  • Duan, A. & Wu, G. Change of cloud amount and the climate warming on the Tibetan Plateau. Geophys. Res. Lett. 33, L22704 (2006).

    Google Scholar 

  • You, Q. et al. From brightening to dimming in sunshine duration over the eastern and central Tibetan Plateau (1961–2005). Theor. Appl. Climatol. 101, 445–457 (2010).

    Google Scholar 

  • Ramanathan, V. et al. Warming trends in Asia amplified by brown cloud solar absorption. Nature 448, 575–578 (2007).

    Google Scholar 

  • Cui, X. & Graf, H. F. Recent land cover changes on the Tibetan Plateau: a review. Clim. Change 94, 47–61 (2009).

    Google Scholar 

  • You, Q., Fraedrich, K., Ren, G., Pepin, N. & Kang, S. Variability of temperature in the Tibetan Plateau based on homogenized surface stations and reanalysis data. Int. J. Climatol. 33, 1337–1347 (2013).

    Google Scholar 

  • Landrum, L. & Holland, M. M. Extremes become routine in an emerging new Arctic. Nat. Clim. Chang. 10, 1108–1115 (2020).

    Google Scholar 

  • Terhaar, J., Kwiatkowski, L. & Bopp, L. Emergent constraint on Arctic Ocean acidification in the twenty-first century. Nature 582, 379–383 (2020).

    Google Scholar 

  • Ouyang, Z. et al. Sea-ice loss amplifies summertime decadal CO2 increase in the western Arctic Ocean. Nat. Clim. Chang. 10, 678–684 (2020).

    Google Scholar 

  • Stocker, T. F. et al. Climate change 2013 the physical science basis: Working Group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. https://doi.org/10.1017/CBO9781107415324 (2013).

  • Bintanja, R. & Van Der Linden, E. C. The changing seasonal climate in the Arctic. Sci. Rep. 3, 1–8 (2013).

    Google Scholar 

  • Cohen, J. et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci. 7, 627–637 (2014).

    Google Scholar 

  • Feldl, N., Po-Chedley, S., Singh, H. K. A., Hay, S. & Kushner, P. J. Sea ice and atmospheric circulation shape the high-latitude lapse rate feedback. npj Clim. Atmos. Sci. 3, 1–9 (2020).

    Google Scholar 

  • Stuecker, M. F. et al. Polar amplification dominated by local forcing and feedbacks. Nat. Clim. Chang. 8, 1076–1081 (2018).

    Google Scholar 

  • Pithan, F. & Mauritsen, T. Arctic amplification dominated by temperature feedbacks in contemporary climate models. Nat. Geosci. 7, 181–184 (2014).

    Google Scholar 

  • Winton, M. Amplified Arctic climate change: what does surface albedo feedback have to do with it? Geophys. Res. Lett. 33, 279–296 (2006).

    Google Scholar 

  • Screen, J. A. & Simmonds, I. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464, 1334–1337 (2010).

    Google Scholar 

  • Dai, A., Luo, D., Song, M. & Liu, J. Arctic amplification is caused by sea-ice loss under increasing CO2. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  • Stroeve, J. C. et al. Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations. Geophys. Res. Lett. 39, 1–7 (2012).

    Google Scholar 

  • Comiso, J. C., Meier, W. N. & Gersten, R. Variability and trends in the Arctic Sea ice cover: results from different techniques. J. Geophys. Res. Ocean. 122, 6883–6900 (2017).

    Google Scholar 

  • Li, F. et al. Arctic sea-ice loss intensifies aerosol transport to the Tibetan Plateau. Nat. Clim. Chang. 10, 1037–1044 (2020).

    Google Scholar 

  • Chatterjee, S., Ravichandran, M., Murukesh, N., Raj, R. P. & Johannessen, O. M. A possible relation between Arctic sea ice and late season Indian Summer Monsoon Rainfall extremes. npj Clim. Atmos. Sci. 4, 1–6 (2021).

    Google Scholar 

  • Deng, K., Jiang, X., Hu, C. & Chen, D. More frequent summer heat waves in southwestern China linked to the recent declining of Arctic sea ice. Environ. Res. Lett. 15, 074011 (2020).

    Google Scholar 

  • Xu, M., Tian, W., Zhang, J., Wang, T. & Qie, K. Impact of sea ice reduction in the barents and kara seas on the variation of the East Asian trough in late winter. J. Clim. 34, 1081–1097 (2021).

    Google Scholar 

  • Zhang, P., Wu, Y., Chen, G. & Yu, Y. North American cold events following sudden stratospheric warming in the presence of low Barents-Kara Sea sea ice. Environ. Res. Lett. 15, 124017 (2020).

    Google Scholar 

  • De, B. & Wu, Y. Robustness of the stratospheric pathway in linking the Barents-Kara Sea sea ice variability to the mid-latitude circulation in CMIP5 models. Clim. Dyn. 53, 193–207 (2019).

    Google Scholar 

  • Mori, M., Watanabe, M., Shiogama, H., Inoue, J. & Kimoto, M. Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci. 7, 869–873 (2014).

    Google Scholar 

  • Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H. & Kimoto, M. A reconciled estimate of the influence of Arctic sea-ice loss on recent Eurasian cooling. Nat. Clim. Chang. 9, 123–129 (2019).

    Google Scholar 

  • McCusker, K. E., Fyfe, J. C. & Sigmond, M. Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci. 9, 838–842 (2016).

    Google Scholar 

  • Ogawa, F. et al. Evaluating impacts of recent Arctic sea ice loss on the Northern hemisphere winter climate change. Geophys. Res. Lett. 45, 3255–3263 (2018).

    Google Scholar 

  • Honda, M., Inoue, J. & Yamane, S. Influence of low Arctic sea-ice minima on anomalously cold Eurasian winters. Geophys. Res. Lett. 36, L08707 (2009).

    Google Scholar 

  • Sun, L., Alexander, M. & Deser, C. Evolution of the global coupled climate response to Arctic sea ice loss during 1990–2090 and its contribution to climate change. J. Clim. 31, 7823–7843 (2018).

    Google Scholar 

  • England, M., Jahn, A. & Polvani, L. Nonuniform contribution of internal variability to recent Arctic sea ice loss. J. Clim. 32, 4039–4053 (2019).

    Google Scholar 

  • Neale, R. B. et al. Description of the NCAR Community Atmosphere Model (CAM 5.0). NCAR Tech. Notes 1, 1–14 (2012).

    Google Scholar 

  • Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  • Kobayashi, S. et al. The JRA-55 reanalysis: General specifications and basic characteristics. J. Meteorol. Soc. Jpn. 93, 5–48 (2015).

    Google Scholar 

  • Dee, D. P. et al. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553–597 (2011).

    Google Scholar 

  • Kanamitsu, M. et al. NCEP-DOE AMIP-II reanalysis (R-2). Bull. Am. Meteorol. Soc. 83, 1631–1644 (2002).

    Google Scholar 

  • He, J. et al. The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data 7, 1–11 (2020).

    Google Scholar 

  • Rayner, N. A. et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. Atmos. 108, 4407 (2003).

    Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going