Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet


Cost and attainability of meeting stringent climate targets without overshoot –

  • 1.

    McCollum, D. L. et al. Energy investment needs for fulfilling the Paris Agreement and achieving the Sustainable Development Goals. Nat. Energy 3, 589–599 (2018).

    Google Scholar 

  • 2.

    Bauer, N. et al. Global energy sector emission reductions and bioenergy use: overview of the bioenergy demand phase of the EMF-33 model comparison. Clim. Change (2018).

  • 3.

    Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    CAS  Google Scholar 

  • 4.

    Riahi, K. et al. The Shared Socioeconomic Pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

    Google Scholar 

  • 5.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) 413–510 (IPCC, Cambridge Univ. Press, 2014).

  • 6.

    Rogelj, J. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) 93–174 (IPCC, WMO, 2018).

  • 7.

    Riahi, K. et al. Locked into Copenhagen pledges—implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. Change 90, 8–23 (2015).

    Google Scholar 

  • 8.

    Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nat. Clim. Change 5, 119–126 (2015).

    Google Scholar 

  • 9.

    Azar., C., Johansson, D. J. A. & Mattsson, N. Meeting global temperature targets—the role of bioenergy with carbon capture and storage. Environ. Res. Lett. (2013).

  • 10.

    Tanaka, K. & O’Neill, B. The Paris Agreement zero-emissions goal is not always consistent with the 1.5 °C and 2 °C temperature targets. Nat. Clim. Change 8, 319–324 (2018).

    CAS  Google Scholar 

  • 11.

    Rogelj, J. et al. A new scenario logic for the Paris Agreement long-term temperature goal. Nature 573, 357–363 (2019).

    CAS  Article  Google Scholar 

  • 12.

    Johansson D. J. A., Azar., C., Lehtveer, M. & Peters, G. P. The role of negative carbon emissions in reaching the Paris climate targets: the impact of target formulation in integrated assessment models. Environ. Res. Lett. (2020).

  • 13.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    CAS  Google Scholar 

  • 14.

    Geden, O. Policy: climate advisers must maintain integrity. Nature 521, 27–28 (2015).

    CAS  Google Scholar 

  • 15.

    Peters, G. P. & Geden, O. Catalysing a political shift from low to negative carbon. Nat. Clim. Change 7, 619–621 (2017).

    Google Scholar 

  • 16.

    Rogelij, J., Geden, O., Cowie, A. & Reisinger, A. Net-zero emissions targets are vague: three ways to fix. Nature 591, 365–368 (2021).

    Google Scholar 

  • 17.

    Fujimori, S., Rogelj, J., Krey, V. & Riahi, K. A new generation of emissions scenarios should cover blind spots in the carbon budget space. Nat. Clim. Change 9, 798–800 (2019).

    CAS  Google Scholar 

  • 18.

    de Coninck, H. et al. in Special Report on Global Warming of 1.5°C (eds Masson-Delmotte, V. et al.) Ch. 4 (IPCC, WMO, 2018).

  • 19.

    Fricko, O. et al. The marker quantification of the Shared Socioeconomic Pathway 2: a middle-of-the-road scenario for the 21st century. Glob. Environ. Change 42, 251–267 (2017).

    Google Scholar 

  • 20.

    MacDougall, A. H. et al. Is there warming in the pipeline? A multi-model analysis of the zero emissions commitment from CO2. Biogeosciences 17, 2987–3016 (2020).

    Google Scholar 

  • 21.

    Fuglestvedt, J. et al. Implications of possible interpretations of ‘greenhouse gas balance’ in the Paris Agreement. Philos. Trans. R. Soc. A 376, 20160445 (2018).

    Google Scholar 

  • 22.

    A Clean Planet for All: Long-Term Low Greenhouse Gas Emission Development Strategy of the European Union and its Member States (European Commission, 2018).

  • 23.

    Van Vuuren, D. P. et al. The Representative Concentration Pathways: an overview. Clim. Change 109, 5 (2011).

    Google Scholar 

  • 24.

    Emmerling, J. et al. The role of the discount rate for emission pathways and negative emissions. Environ. Res. Lett. 14, 104008 (2019).

    CAS  Google Scholar 

  • 25.

    Rogelj, J., McCollum, D. L., O’Neill, B. C. & Riahi, K. 2020 emissions levels required to limit warming to below 2 °C. Nat. Clim. Change 3, 405–412 (2013).

    CAS  Google Scholar 

  • 26.

    Kriegler, E. et al. Short term policies to keep the door open for Paris climate goals. Environ. Res. Lett. 13, 074022 (2018).

    Google Scholar 

  • 27.

    Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

    Google Scholar 

  • 28.

    IPCC: Summary for Policymakers. In Special Report on Climate Change and Land (eds Shukla, P. R. et al.) (WMO, 2019).

  • 29.

    Realmonte, G. et al. An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nat. Commun. 10, 3277 (2019).

    CAS  Google Scholar 

  • 30.

    Riahi, K. et al. in Global Energy Assessment—Toward a Sustainable Future (eds Johansson, T. B. et al.) 1203–1306 (Cambridge Univ. Press, 2012).

  • 31.

    Fujimori, S., Kainuma, M., Masui, T., Hasegawa, T. & Dai, H. The effectiveness of energy service demand reduction: a scenario analysis of global climate change mitigation. Energy Policy 75, 379–391 (2014).

    Google Scholar 

  • 32.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  • 33.

    Wilson, C. et al. Granular technologies to accelerate decarbonization. Science 368, 36–39 (2020).

    CAS  Google Scholar 

  • 34.

    Grubler, A. et al. A low energy demand scenario for meeting the 1.5 °C target and sustainable development goals without negative emission technologies. Nat. Energy 3, 515–527 (2018).

    Google Scholar 

  • 35.

    Creutzig, F. et al. Towards demand-side solutions for mitigating climate change. Nat. Clim. Change 8, 260–263 (2018).

    Google Scholar 

  • 36.

    Höhne, N., den Elzen, M. & Escalante, D. Regional GHG reduction targets based on effort sharing: a comparison of studies. Clim. Policy 14, 122–147 (2014).

    Google Scholar 

  • 37.

    Statement by H.E. Xi Jinping President of the People’s Republic of China at the General Debate of the 75th Session of the United Nations General Assembly (Ministry of Foreign Affairs, the People’s Republic of China, 2020);

  • 38.

    Submission by Croatia and the European Commission on Behalf of the European Union and its Member States (UNFCCC, 2020);

  • 39.

    Policy Speech by the Prime Minister to the 203rd Session of the Diet (Cabinet Public Relations Office, Japan, 2020);

  • 40.

    Address by President Moon Jae-in at National Assembly to Propose Government Budget for 2021 (Office of the President, Republic of Korea, 2020);

  • 41.

    Fujimori, S., Hasegawa, T., Masui, T. & Takahashi, K. Land use representation in a global CGE model for long-term simulation: CET vs. logit functions. Food Secur. 6, 685–699 (2014).

    Google Scholar 

  • 42.

    Fujimori, S., Masui, T. & Matsuoka, Y. AIM/CGE [basic] Manual Discussion Paper Series (Center for Social and Environmental Systems Research, National Institute for Environmental Studies, 2012).

  • 43.

    Pedro, R. Development of a Global Integrated Energy Model to Evaluate the Brazilian Role in Climate Change Mitigation Scenarios. DSc thesis, Programa de Planejamento Energético, COPPE/UFRJ (2016).

  • 44.

    Capros, P. et al. Description of models and scenarios used to assess European decarbonisation pathways. Energy Strategy Rev. 2, 220–230 (2014).

    Google Scholar 

  • 45.

    GEM-E3 Model Manual 2017 (E3Mlab, 2017).

  • 46.

    Stehfest, E. et al. Integrated Assessment of Global Environmental Change with IMAGE 3.0. Model Description and Policy Applications (PBL Netherlands Environmental Assessment Agency, 2014).

  • 47.

    Huppmann, D. et al. The MESSAGEix Integrated Assessment Model and the ix modeling platform (ixmp): an open framework for integrated and cross-cutting analysis of energy, climate, the environment, and sustainable development. Environ. Model. Softw. 112, 143–156 (2019).

    Google Scholar 

  • 48.

    van der Zwaan, B., Kober, T., Longa, F. D., van der Laan, A. & Jan Kramer, G. An integrated assessment of pathways for low-carbon development in Africa. Energy Policy 117, 387–395 (2018).

    Google Scholar 

  • 49.

    Després, J. et al. POLES-JRC Model Documentation (European Union, 2018).

  • 50.

    Kriegler, E. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change (2017).

  • 51.

    Luderer, G. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. (2013).

  • 52.

    Bosetti, V., Carraro, C., Galeotti, M., Massetti, E. & Tavoni, M. A World Induced Technical Change Hybrid model. Energy J. 27, 13–38 (2006).

    Google Scholar 

  • 53.

    Emmerling, J. et al. The WITCH 2016 Model—Documentation and Implementation of the Shared Socioeconomic Pathways (Fondazione Eni Enrico Mattei, 2016).

  • 54.

    Hasegawa, T. et al. Risk of increased food insecurity under stringent global climate change mitigation policy. Nat. Clim. Change 8, 699–703 (2018).

    Google Scholar 

  • 55.

    Fujimori, S. et al. Inclusive Climate Change mitigation and food security policy under 1.5 °C climate goal. Environ. Res. Lett. 13, 074033 (2018).

    Google Scholar 

  • 56.

    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).

    Google Scholar 

  • 57.

    Ohashi, H. et al. Biodiversity can benefit from climate stabilization despite adverse side effects of land-based mitigation. Nat. Commun. 10, 5240 (2019).

    Google Scholar 

  • 58.

    World Energy Outlook 2020 (IEA, 2020).

  • 59.

    Andrijevic, M., Schleussner, C.-F., Gidden, M. J., McCollum, D. L. & Rogelj, J. COVID-19 recovery funds dwarf clean energy investment needs. Science 370, 298–300 (2020).

    CAS  Google Scholar 

  • 60.

    Harmsen, M. et al. Integrated assessment model diagnostics: key indicators and model evolution. Environ. Res. Lett. 16, 054046 (2021).

    Google Scholar 

  • 61.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009).

    CAS  Google Scholar 

  • 62.

    Meinshausen, M., Raper, S. C. & Wigley, T. M. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    CAS  Google Scholar 

  • 63.

    Rogelj, J., Meinshausen, M., Sedláček, J. & Knutti, R. Implications of potentially lower climate sensitivity on climate projections and policy. Environ. Res. Lett. 9, 031003 (2014).

    Google Scholar 

  • 64.

    Rogelj, J., Meinshausen, M. & Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Change 2, 248–253 (2012).

    Google Scholar 

  • 65.

    Riahi, K. et al. ENGAGE Global Scenarios (Version 2.0) (Zenodo, 2021);


    Please help keep this Site Going