Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Summer and winter precipitation in East Asia scale with global warming at different rates | Communications Earth & Environment – Nature.com

  • 1.

    Gillett, N. P. et al. Attribution of polar warming to human influence. Nat. Geosci. 1, 750–754 (2008).

    CAS  Article  Google Scholar 

  • 2.

    Stocker, T. (ed.). Climate Change 2013: the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2014).

  • 3.

    Bock, L. et al. Quantifying progress across different CMIP phases with the ESMValTool. J. Geophys. Res. Atmos. 125, e2019JD032321 (2020).

    Article  Google Scholar 

  • 4.

    Bates, B., Kundzewicz, Z. & Wu, S. Climate Change and Water (IPCC Secretariat, 2008).

  • 5.

    Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl Acad. Sci. USA 111, 3245–3250 (2014).

    CAS  Article  Google Scholar 

  • 6.

    Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, e1500323 (2016).

    Article  Google Scholar 

  • 7.

    Djehdian, L. A., Chini, C. M., Marston, L., Konar, M. & Stillwell, A. S. Exposure of urban food–energy–water (FEW) systems to water scarcity. Sustain. Cities Soc. 50, 101621 (2019).

    Article  Google Scholar 

  • 8.

    Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).

    Article  Google Scholar 

  • 9.

    Pendergrass, A. G. & Hartmann, D. L. Changes in the distribution of rain frequency and intensity in response to global warming. J. Clim. 27, 8372–8383 (2014).

    Article  Google Scholar 

  • 10.

    Pfahl, S., O’Gorman, P. A. & Fischer, E. M. Understanding the regional pattern of projected future changes in extreme precipitation. Nat. Clim. Change 7, 423–427 (2017).

    Article  Google Scholar 

  • 11.

    Chou, C. & Neelin, J. D. Mechanisms of global warming impacts on regional tropical precipitation. J. Clim. 17, 2688–2701 (2004).

    Article  Google Scholar 

  • 12.

    Chou, C. et al. Increase in the range between wet and dry season precipitation. Nat. Geosci. 6, 263–267 (2013).

    CAS  Article  Google Scholar 

  • 13.

    Liu, C. & Allan, R. P. Observed and simulated precipitation responses in wet and dry regions 1850–2100. Environ. Res. Lett. 8, 034002 (2013).

    Article  Google Scholar 

  • 14.

    Meehl, G. A., Arblaster, J. M. & Tebaldi, C. Understanding future patterns of increased precipitation intensity in climate model simulations. Geophys. Res. Lett. 32, https://doi.org/10.1029/2005GL023680 (2005).

  • 15.

    Seager, R. & Vecchi, G. A. Greenhouse warming and the 21st century hydroclimate of southwestern North America. Proc. Natl Acad. Sci. USA 107, 21277–21282 (2010).

    CAS  Article  Google Scholar 

  • 16.

    Norris, J., Chen, G. & Neelin, J. D. Thermodynamic versus dynamic controls on extreme precipitation in a warming climate from the Community Earth System Model Large Ensemble. J. Clim. 32, 1025–1045 (2019).

    Article  Google Scholar 

  • 17.

    Yang, T., Ding, J., Liu, D., Wang, X. & Wang, T. Combined use of multiple drought indices for global assessment of dry gets drier and wet gets wetter paradigm. J. Clim. 32, 737–748 (2019).

    Article  Google Scholar 

  • 18.

    Chadwick, R. & Good, P. Understanding nonlinear tropical precipitation responses to CO2 forcing. Geophys. Res. Lett. 40, 4911–4915 (2013).

    Article  Google Scholar 

  • 19.

    Greve, P. et al. Global assessment of trends in wetting and drying over land. Nat. Geosci. 7, 716–721 (2014).

    CAS  Article  Google Scholar 

  • 20.

    Roderick, M. L., Sun, F., Lim, W. H. & Farquhar, G. D. A general framework for understanding the response of the water cycle to global warming over land and ocean. Hydrol. Earth Syst. Sci. 18, 1575–1589 (2014).

    Article  Google Scholar 

  • 21.

    Byrne, M. P. & O’Gorman, P. A. The response of precipitation minus evapotranspiration to climate warming: Why the “wet-get-wetter, dry-get-drier” scaling does not hold over land. J. Clim. 28, 8078–8092 (2015).

    Article  Google Scholar 

  • 22.

    Scheff, J. & Frierson, D. M. Terrestrial aridity and its response to greenhouse warming across CMIP5 climate models. J. Clim. 28, 5583–5600 (2015).

    Article  Google Scholar 

  • 23.

    Emori, S. & Brown, S. J. Dynamic and thermodynamic changes in mean and extreme precipitation under changed climate. Geophys. Res. Lett. 32, L17706 (2005).

    Article  Google Scholar 

  • 24.

    O’Gorman, P. A. Precipitation extremes under climate change. Curr. Clim. Change Rep. 1, 49–59 (2015).

    Article  Google Scholar 

  • 25.

    Trenberth, K. E., Fasullo, J. T. & Shepherd, T. G. Attribution of climate extreme events. Nat. Clim. Change 5, 725–730 (2015).

    Article  Google Scholar 

  • 26.

    Vautard, R. et al. Attribution of human-induced dynamical and thermodynamical contributions in extreme weather events. Environ. Res. Lett. 11, 114009 (2016).

    Article  Google Scholar 

  • 27.

    Lu, J. X. et al. Enhanced hydrological extremes in the western United States under global warming through the lens of water vapor wave activity. Npj Clim. Atmos. Sci 1, 1–9 (2018).

    Article  Google Scholar 

  • 28.

    Hu, H., Leung, L. R. & Feng, Z. Observed warm‐season characteristics of MCS and non‐MCS rainfall and their recent changes in the Central United States. Geophys. Res. Lett. 47, e2019GL086783 (2020).

    Google Scholar 

  • 29.

    Deser, C. et al. Insights from Earth system model initial-condition large ensembles and future prospects. Nat. Clim. Change 10, 277–286 (2020).

    Article  Google Scholar 

  • 30.

    Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A. & Maher, N. More extreme precipitation in the world’s dry and wet regions. Nat. Clim. Change 6, 508–513 (2016).

    Article  Google Scholar 

  • 31.

    Bao, J., Sherwood, S. C., Alexander, L. V. & Evans, J. P. Future increases in extreme precipitation exceed observed scaling rates. Nat. Clim. Change 7, 128–132 (2017).

    Article  Google Scholar 

  • 32.

    Ting, M., Seager, R., Li, C., Liu, H. & Henderson, N. Mechanism of future spring drying in the southwestern United States in CMIP5 models. J. Clim. 31, 4265–4279 (2018).

    Article  Google Scholar 

  • 33.

    Zhang, M. & Song, H. Evidence of deceleration of atmospheric vertical overturning circulation over the tropical Pacific. Geophys. Res. Lett. 33, L12701 (2006).

    Article  Google Scholar 

  • 34.

    Chang, E. K., Guo, Y. & Xia, X. CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res. Atmos. 117, D23118 (2012).

    Google Scholar 

  • 35.

    Seneviratne, S. et al. Changes in Climate Extremes and Their Impacts on the Natural Physical Environment (Cambridge Univ. Press, 2012).

  • 36.

    Chang, E. K. CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Clim. 26, 9903–9922 (2013).

    Article  Google Scholar 

  • 37.

    Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nat. Geosci. 7, 703–708 (2014).

    CAS  Article  Google Scholar 

  • 38.

    Yang, D. et al. Role of tropical variability in driving decadal shifts in the Southern Hemisphere summertime eddy-driven jet. J. Clim. 33, 5445–5463 (2020).

    Article  Google Scholar 

  • 39.

    Maher, N. The Max Planck Institute Grand Ensemble: enabling the exploration of climate system variability. J. Adv. Model Earth Syst. 11, 2050–2069 (2019).

    Article  Google Scholar 

  • 40.

    Tatebe, H. Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geosci. Model Dev. 12, 2727–2765 (2019).

    CAS  Article  Google Scholar 

  • 41.

    Watt‐Meyer, O., Frierson, D. M. & Fu, Q. Hemispheric asymmetry of tropical expansion under CO2 forcing. Geophys. Res. Lett. 46, 9231–9240 (2019).

    Article  Google Scholar 

  • 42.

    Byrne, M. P. & O’Gorman, P. A. Understanding decreases in land relative humidity with global warming: Conceptual model and GCM simulations. J. Clim. 29, 9045–9061 (2016).

    Article  Google Scholar 

  • 43.

    Byrne, M. P. & O’Gorman, P. A. Trends in continental temperature and humidity directly linked to ocean warming. Proc. Natl Acad. Sci. USA 115, 4863–4868 (2018).

    CAS  Article  Google Scholar 

  • 44.

    Ghausi, S. A. & Ghosh, S. Diametrically opposite scaling of extreme precipitation and streamflow to temperature in South and Central Asia. Geophys. Res. Lett. 47, e2020GL089386 (2020).

  • 45.

    Bony, S. et al. Clouds, circulation and climate sensitivity. Nat. Geosci. 8, 261–268 (2015).

    CAS  Article  Google Scholar 

  • LEAVE A RESPONSE

    Please help keep this Site Going