Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

No evidence for globally coherent warm and cold periods over the preindustrial Common Era – Nature.com

  • 1.

    Köppen, W. & Wegener, A. Die Klimate der Geologischen Vorzeit (Gebrüder Borntraeger, 1924).

  • 2.

    Matthes, F. E. Report of Committee on Glaciers, April 1939. Eos 20, 518–523 (1939).

  • 3.

    Grove, J. M. The Little Ice Age (Methuen, 1988).

  • 4.

    Matthews, J. A. & Briffa, K. R. The ‘little ice age’: re-evaluation of an evolving concept. Geogr. Ann. A 87, 17–36 (2005).

  • 5.

    Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 383–464 (Cambridge Univ. Press, 2013).

  • 6.

    Intergovernmental Panel on Climate Change. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

  • 7.

    Brückner, E. Klimaschwankungen seit 1700 nebst Bemerkungen über die Klimaschwankungen der Diluvialzeit (E. Hölzel, 1890).

  • 8.

    Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science 326, 1256–1260 (2009).

  • 9.

    Lamb, H. H. The early medieval warm epoch and its sequel. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1, 13–37 (1965).

  • 10.

    Bradley, R. S., Hughes, M. K. & Diaz, H. F. Climate in medieval time. Science 302, 404–405 (2003).

  • 11.

    Helama, S., Jones, P. D. & Briffa, K. R. Dark Ages Cold Period: a literature review and directions for future research. Holocene 27, 1600–1606 (2017).

  • 12.

    Ljungqvist, F. C. A new reconstruction of temperature variability in the extra-tropical Northern Hemisphere during the last two millennia. Geogr. Ann. A 92, 339–351 (2010).

  • 13.

    Büntgen, U. et al. Cooling and societal change during the Late Antique Little Ice Age from 536 to around 660 AD. Nat. Geosci. 9, 231–236 (2016).

  • 14.

    Röthlisberger, F. 10,000 Jahre Gletschergeschichte der Erde (Sauerländer, 1986).

  • 15.

    Wang, J., Emile-Geay, J., Guillot, D., Smerdon, J. E. & Rajaratnam, B. Evaluating climate field reconstruction techniques using improved emulations of real-world conditions. Clim. Past 10, 1–19 (2014).

  • 16.

    Bradley, R. 1000 years of climate change. Science 288, 1353–1355 (2000).

  • 17.

    Osborn, T. J. The spatial extent of 20th-century warmth in the context of the past 1200 years. Science 311, 841–844 (2006).

  • 18.

    PAGES2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013); erratum 6, 503 (2013); corrigendum 8, 981–982 (2015).

  • 19.

    Wang, J., Emile-Geay, J., Guillot, D., McKay, N. P. & Rajaratnam, B. Fragility of reconstructed temperature patterns over the Common Era: implications for model evaluation. Geophys. Res. Lett. 42, 7162–7170 (2015).

  • 20.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

  • 21.

    McPhaden, M. J., Zebiak, S. E. & Glantz, M. H. ENSO as an integrating concept in Earth science. Science 314, 1740–1745 (2006).

  • 22.

    Stenni, B. et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 13, 1609–1634 (2017).

  • 23.

    Caesar, L., Rahmstorf, S., Robinson, A., Feulner, G. & Saba, V. Observed fingerprint of a weakening Atlantic Ocean overturning circulation. Nature 556, 191–196 (2018).

  • 24.

    Wang, J. et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nat. Geosci. 10, 512–517 (2017).

  • 25.

    Delworth, T. L. et al. The North Atlantic Oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).

  • 26.

    Hegerl, G. C., Brönnimann, S., Schurer, A. & Cowan, T. The early 20th century warming: anomalies, causes, and consequences. Wiley Interdiscip. Rev. Clim. Change 9, e522 (2018).

  • 27.

    Abram, N. J. et al. Early onset of industrial-era warming across the oceans and continents. Nature 536, 411–418 (2016); corrigendum 545, 252 (2017).

  • 28.

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Intergovernmental Panel on Climate Change) 867–952 (Cambridge Univ. Press, 2013).

  • 29.

    Collins, M. et al. Challenges and opportunities for improved understanding of regional climate dynamics. Nat. Clim. Chang. 8, 101–108 (2018).

  • 30.

    Xie, S.-P. et al. Towards predictive understanding of regional climate change. Nat. Clim. Chang. 5, 921–930 (2015).

  • 31.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. 117, D08101 (2012).

  • 32.

    Taylor, M. H., Losch, M., Wenzel, M. & Schröter, J. On the sensitivity of field reconstruction and prediction using empirical orthogonal functions derived from gappy data. J. Clim. 26, 9194–9205 (2013).

  • 33.

    Gneiting, T. & Raftery, A. E. Strictly proper scoring rules, prediction, and estimation. J. Am. Stat. Assoc. 102, 359–378 (2007).

  • 34.

    Werner, J. P. & Tingley, M. P. Technical note: Probabilistically constraining proxy age–depth models within a Bayesian hierarchical reconstruction model. Clim. Past 11, 533–545 (2015).

  • 35.

    Cook, E. R., Briffa, K. R. & Jones, P. D. Spatial regression methods in dendroclimatology: a review and comparison of two techniques. Int. J. Climatol. 14, 379–402 (1994).

  • 36.

    Tipton, J., Hooten, M., Pederson, N., Tingley, M. & Bishop, D. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models. Environmetrics 27, 42–54 (2016).

  • 37.

    Werner, J. P., Divine, D. V., Charpentier Ljungqvist, F., Nilsen, T. & Francus, P. Spatio-temporal variability of Arctic summer temperatures over the past 2 millennia. Clim. Past 14, 527–557 (2018).

  • 38.

    Jones, P. et al. High-resolution palaeoclimatology of the last millennium: a review of current status and future prospects. Holocene 19, 3–49 (2009).

  • 39.

    Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl Acad. Sci. USA 105, 13252–13257 (2008).

  • 40.

    Cook, E. R. et al. Asian monsoon failure and megadrought during the last millennium. Science 328, 486–489 (2010).

  • 41.

    Neukom, R. et al. Inter-hemispheric temperature variability over the past millennium. Nat. Clim. Chang. 4, 362–367 (2014).

  • 42.

    Luterbacher, J. et al. Reconstruction of sea level pressure fields over the Eastern North Atlantic and Europe back to 1500. Clim. Dyn. 18, 545–561 (2002).

  • 43.

    Luterbacher, J., Dietrich, D., Xoplaki, E., Grosjean, M. & Wanner, H. European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303, 1499–1503 (2004).

  • 44.

    Neukom, R. et al. Multi-centennial summer and winter precipitation variability in southern South America. Geophys. Res. Lett. 37, L14708 (2010).

  • 45.

    Neukom, R. et al. Multiproxy summer and winter surface air temperature field reconstructions for southern South America covering the past centuries. Clim. Dyn. 37, 35–51 (2011).

  • 46.

    Smerdon, J. E. & Pollack, H. N. Reconstructing Earth’s surface temperature over the past 2000 years: the science behind the headlines. Wiley Interdiscip. Rev. Clim. Change 7, 746–771 (2016).

  • 47.

    Christiansen, B., Schmith, T. & Thejll, P. A surrogate ensemble study of climate reconstruction methods: stochasticity and robustness. J. Clim. 22, 951–976 (2009).

  • 48.

    Smerdon, J. E., Kaplan, A., Chang, D. & Evans, M. N. A pseudoproxy evaluation of the CCA and RegEM methods for reconstructing climate fields of the last millennium. J. Clim. 23, 4856–4880 (2010).

  • 49.

    Guillot, D., Rajaratnam, B. & Emile-Geay, J. Statistical paleoclimate reconstructions via Markov random fields. Ann. Appl. Stat. 9, 324–352 (2015).

  • 50.

    Friedman, J., Hastie, T. & Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9, 432–441 (2008).

  • 51.

    Steiger, N. J., Hakim, G. J., Steig, E. J., Battisti, D. S. & Roe, G. H. Assimilation of time-averaged pseudoproxies for climate reconstruction. J. Clim. 27, 426–441 (2014).

  • 52.

    Hakim, G. J. et al. The last millennium climate reanalysis project: framework and first results. J. Geophys. Res. D 121, 6745–6764 (2016).

  • 53.

    Steiger, N. J., Smerdon, J. E., Cook, E. R. & Cook, B. I. A reconstruction of global hydroclimate and dynamical variables over the Common Era. Sci. Data 5, 180086 (2018).

  • 54.

    Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 97, 735–754 (2016).

  • 55.

    Gómez-Navarro, J. J., Zorita, E., Raible, C. C. & Neukom, R. Pseudoproxy tests of the analogue method to reconstruct spatially resolved global temperature during the Common Era. Clim. Past 13, 629–648 (2017).

  • 56.

    Proakis, J. G. & Manolakis, D. G. Digital Signal Processing Principles, Algorithms, and Applications (Macmillan, 1992).

  • 57.

    Hosking, J. R. M. Modeling persistence in hydrological time series using fractional differencing. Wat. Resour. Res. 20, 1898–1908 (1984).

  • 58.

    Wahl, E. R. & Smerdon, J. E. Comparative performance of paleoclimate field and index reconstructions derived from climate proxies and noiseonly predictors. Geophys. Res. Lett. 39, L06703 (2012).

  • 59.

    Higham, N. J. Cholesky factorization. Wiley Interdiscip. Rev. Comput. Stat. 1, 251–254 (2009).

  • 60.

    Neukom, R., Schurer, A. P., Steiger, N. J. & Hegerl, G. C. Possible causes of data model discrepancy in the temperature history of the last millennium. Sci. Rep. 8, 7572 (2018).

  • 61.

    PAGES 2k Consortium Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nature Geosci. (in the press).

  • 62.

    Christiansen, B. & Ljungqvist, F. C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 55, 40–96 (2017).

  • 63.

    Ammann, C. M. & Wahl, E. R. The importance of the geophysical context in statistical evaluations of climate reconstruction procedures. Clim. Change 85, 71–88 (2007).

  • 64.

    Gergis, J., Neukom, R., Gallant, A. J. E. & Karoly, D. J. Australasian temperature reconstructions spanning the last millennium. J. Clim. 29, 5365–5392 (2016).

  • 65.

    Wahl, E. R., Ritson, D. M. & Ammann, C. M. Comment on “Reconstructing past climate from noisy data”. Science 312, 529 (2006).

  • 66.

    von Storch, H. Reconstructing past climate from noisy data. Science 306, 679–682 (2004).

  • 67.

    Bürger, G. & Cubasch, U. Are multiproxy climate reconstructions robust? Geophys. Res. Lett. 32, L23711 (2005).

  • 68.

    Taylor, K. E., Stouffer, R. J. & Meehl, G. A. An overview of CMIP5 and the experiment design. Bull. Am. Meteorol. Soc. 93, 485–498 (2012).

  • 69.

    Xiao-Ge, X., Tong-Wen, W. & Jie, Z. Introduction of CMIP5 experiments carried out with the climate system models of Beijing Climate Center. Adv. Clim. Chang. Res. 4, 41–49 (2013).

  • 70.

    Landrum, L. et al. Last millennium climate and its variability in CCSM4. J. Clim. 26, 1085–1111 (2013).

  • 71.

    Phipps, S. J. et al. The CSIRO Mk3L climate system model version 1.0 – Part 2: response to external forcings. Geosci. Model Dev. 5, 649–682 (2012).

  • 72.

    Schmidt, G. A. et al. Present-day atmospheric simulations using GISS ModelE: comparison to in situ, satellite, and reanalysis data. J. Clim. 19, 153–192 (2006).

  • 73.

    Schurer, A. P., Hegerl, G. C., Mann, M. E., Tett, S. F. B. & Phipps, S. J. Separating forced from chaotic climate variability over the past millennium. J. Clim. 26, 6954–6973 (2013).

  • 74.

    Dufresne, J.-L. et al. Climate change projections using the IPSL-CM5 Earth System Model: from CMIP3 to CMIP5. Clim. Dyn. 40, 2123–2165 (2013).

  • 75.

    Jungclaus, J. H. et al. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 5, 422–446 (2013).

  • 76.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

  • 77.

    Mann, M. E., Rutherford, S., Wahl, E. & Ammann, C. Robustness of proxy-based climate field reconstruction methods. J. Geophys. Res. 112, D12109 (2007).

  • 78.

    Gallant, A. J. E. & Gergis, J. An experimental streamflow reconstruction for the River Murray, Australia, 1783–1988. Wat. Resour. Res. 47, W00G04 (2011).

  • 79.

    Gergis, J. et al. On the long-term context of the 1997–2009 ‘Big Dry’ in South-Eastern Australia: insights from a 206-year multi-proxy rainfall reconstruction. Clim. Change 111, 923–944 (2012).

  • 80.

    Frank, D. C. et al. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate. Nature 463, 527–530 (2010).

  • LEAVE A RESPONSE

    Please help keep this Site Going