Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Estimating and tracking the remaining carbon budget for stringent climate targets – Nature.com

  • 1.

    Intergovernmental Panel on Climate Change (IPCC) Climate Change 2013 : The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge Univ. Press, 2013).

  • 2.

    Messner, D., Schellnhuber, J., Rahmstorf, S. & Klingenfeld, D. The budget approach: a framework for a global transformation toward a low-carbon economy. J. Renew. Sustain. Energy 2, 031003 (2010).

  • 3.

    Le Quéré, C. et al. Global carbon budget 2017. Earth Syst. Sci. Data 10, 405–448 (2018).

  • 4.

    Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2009).

  • 5.

    Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

  • 6.

    Matthews, H. D. & Caldeira, K. Stabilizing climate requires near-zero emissions. Geophys. Res. Lett. 35, https://doi.org/10.1029/2007GL032388 (2008). This was the first paper to highlight the importance of global net-zero CO 2emissions for limiting global warming.

  • 7.

    Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1162 (2009). This seminal study reports carbon budgets up to the recent past and enabled the broad uptake of the carbon budget concept in climate policy discussions by linking it to the amount of carbon available in proven economically recoverable oil, gas and coal reserves.

  • 8.

    Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

  • 9.

    MacDougall, A. H. & Friedlingstein, P. The origin and limits of the near proportionality between climate warming and cumulative CO2 emissions. J. Clim. 28, 4217–4230 (2015). This paper provides a decomposition of the various factors contributing to the near-linear proportionality underlying TCRE.

  • 10.

    Gillett, N. P., Arora, V. K., Matthews, D. & Allen, M. R. Constraining the ratio of global warming to cumulative CO2 emissions using CMIP5 simulations. J. Clim. 26, 6844–6858 (2013). This study discusses the shape and observational constraints of the TCRE.

  • 11.

    Zickfeld, K. et al. Long-term climate change commitment and reversibility: an EMIC intercomparison. J. Clim. 26, 5782–5809 (2013). This multi-model study quantifies the warming commitment after a cessation of CO 2emissions.

  • 12.

    Matthews, H. D. et al. Estimating carbon budgets for ambitious climate targets. Curr. Clim. Change Rep. 3, 69–77 (2017).

  • 13.

    Williams, R. G., Goodwin, P., Roussenov, V. M. & Bopp, L. A framework to understand the transient climate response to emissions. Environ. Res. Lett. 11, 015003 (2016).

  • 14.

    The United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement https://unfccc.int/sites/default/files/english_paris_agreement.pdf (UNFCCC, 2015).

  • 15.

    Rogelj, J., Schleussner, C.-F., & Hare, W. Getting it right matters: temperature goal interpretations in geoscience research. Geophys. Res. Lett. 44, 10662–610665 (2017).

  • 16.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).

  • 17.

    Knutti, R. & Rogelj, J. The legacy of our CO2 emissions: a clash of scientific facts, politics and ethics. Clim. Change 133, 361–373 (2015).

  • 18.

    Matthews, H. D., Solomon, S. & Pierrehumbert, R. Cumulative carbon as a policy framework for achieving climate stabilization. Phil. Trans. R. Soc. Lond. A 2012, 4365–4379 (1974).

  • 19.

    Matthews, H. D. & Solomon, S. Atmosphere. Irreversible does not mean unavoidable. Science 340, 438–439 (2013).

  • 20.

    Solomon, S., Pierrehumbert, R., Matthews, D. & Daniel, J. in Climate Science for Serving Society—Research, Modeling and Prediction Priorities (eds Hurrell, J. & Asrar, G.) 506 (Springer, 2013).

  • 21.

    Solomon, S. et al. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl Acad. Sci. USA 107, 18354–18359 (2010).

  • 22.

    Minx, J. C. et al. Negative emissions—Part 1: research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

  • 23.

    Fuss, S. et al. Negative emissions—Part 2: costs, potentials and side effects. Environ. Res. Lett. 13, 063002 (2018).

  • 24.

    Nemet, G. F. et al. Negative emissions—Part 3: innovation and upscaling. Environ. Res. Lett. 13, 063003 (2018).

  • 25.

    Williamson, P. Emissions reduction: scrutinize CO2 removal methods. Nature 530, 153–155 (2016).

  • 26.

    Bellamy, R. Incentivize negative emissions responsibly. Nat. Energy 3, 532–534 (2018).

  • 27.

    The Royal Society Greenhouse Gas Removal (The Royal Society, 2018).

  • 28.

    Intergovernmental Panel on Climate Change (IPCC) Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

  • 29.

    Hallegatte, S. et al. Mapping the climate change challenge. Nat. Clim. Chang. 6, 663–668 (2016).

  • 30.

    Millar, R. J. et al. Emission budgets and pathways consistent with limiting warming to 1.5 °C. Nat. Geosci. 10, 741–747 (2017).

  • 31.

    Goodwin, P. et al. Pathways to 1.5 °C and 2 °C warming based on observational and geological constraints. Nat. Geosci. 11, 102–107 (2018).

  • 32.

    Tokarska, K. B. & Gillett, N. P. Cumulative carbon emissions budgets consistent with 1.5 °C global warming. Nat. Clim. Chang. 8, 296–299 (2018).

  • 33.

    Tokarska, K. B., Gillett, N. P., Arora, V. K., Lee, W. G. & Zickfeld, K. The influence of non-CO2 forcings on cumulative carbon emissions budgets. Environ. Res. Lett. 13, 034039 (2018).

  • 34.

    Richardson, M., Cowtan, K. & Millar, R. J. Global temperature definition affects achievement of long-term climate goals. Environ. Res. Lett. 13, 054004 (2018).

  • 35.

    Schurer, A. P. et al. Interpretations of the Paris climate target. Nat. Geosci. 11, 220–221 (2018).

  • 36.

    Rogelj, J. et al. Scenarios towards limiting global mean temperature increase below 1.5 °C. Nat. Clim. Chang. 8, 325–332 (2018).

  • 37.

    Rogelj, J. et al. Differences between carbon budget estimates unravelled. Nat. Clim. Chang. 6, 245–252 (2016).

  • 38.

    Rogelj, J., Meinshausen, M., Schaeffer, M., Knutti, R. & Riahi, K. Impact of short-lived non-CO2 mitigation on carbon budgets for stabilizing global warming. Environ. Res. Lett. 10, 075001 (2015).

  • 39.

    Friedlingstein, P. et al. Persistent growth of CO2 emissions and implications for reaching climate targets. Nat. Geosci. 7, 709–715 (2014).

  • 40.

    Comyn-Platt, E. et al. Carbon budgets for 1.5 and 2 °C targets lowered by natural wetland and permafrost feedbacks. Nat. Geosci. 11, 568–573 (2018).

  • 41.

    Gasser, T. et al. Path-dependent reductions in CO2 emission budgets caused by permafrost carbon release. Nat. Geosci. 11, 830–835 (2018). This paper provides an overview of recent estimates of the impact of permafrost thawing on remaining carbon budgets.

  • 42.

    Lowe, J. A. & Bernie, D. The impact of Earth system feedbacks on carbon budgets and climate response. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2017.0263 (2018).

  • 43.

    Mengis, N., Partanen, A.-I., Jalbert, J. & Matthews, H. D. 1.5 °C carbon budget dependent on carbon cycle uncertainty and future non-CO2 forcing. Sci. Rep. 8, 5831 (2018).

  • 44.

    Rogelj, J. et al. Mitigation choices impact carbon budget size compatible with low temperature goals. Environ. Res. Lett. 10, 075003 (2015).

  • 45.

    Geden, O. Politically informed advice for climate action. Nat. Geosci. 11, 380–383 (2018).

  • 46.

    Peters, G. P. Beyond carbon budgets. Nat. Geosci. 11, 378–380 (2018).

  • 47.

    Kriegler, E. et al. Pathways limiting warming to 1.5 °C: a tale of turning around in no time? Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0457 (2018).

  • 48.

    Rogelj, J. et al. in Global Warming of 1.5 °C: An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (eds Flato, G., Fuglestvedt, J., Mrabet, R. & Schaeffer, R.) 93–174 (IPCC/WMO, 2018). This special report by the IPCC applied a forerunner of the framework described in this Perspective.

  • 49.

    Millar, R. J. & Friedlingstein, P. The utility of the historical record for assessing the transient climate response to cumulative emissions. Phil. Trans. R. Soc. A 376, https://doi.org/10.1098/rsta.2016.0449 (2018).

  • 50.

    Tachiiri, K., Hajima, T. & Kawamiya, M. Increase of uncertainty in transient climate response to cumulative carbon emissions after stabilization of atmospheric CO2 concentration. Environ. Res. Lett. 10, 125018 (2015).

  • 51.

    Steinacher, M. & Joos, F. Transient Earth system responses to cumulative carbon dioxide emissions: linearities, uncertainties, and probabilities in an observation-constrained model ensemble. Biogeosciences 13, 1071–1103 (2016).

  • 52.

    Ehlert, D., Zickfeld, K., Eby, M. & Gillett, N. The sensitivity of the proportionality between temperature change and cumulative CO2 emissions to ocean mixing. J. Clim. 30, 2921–2935 (2017).

  • 53.

    MacDougall, A. H., Swart, N. C. & Knutti, R. The uncertainty in the transient climate response to cumulative CO2 emissions arising from the uncertainty in physical climate parameters. J. Clim. 30, 813–827 (2017).

  • 54.

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 1029–1136 (Cambridge Univ. Press, 2013). This report by the IPCC provided the first assessment of TCRE.

  • 55.

    Leduc, M., Matthews, H. D. & de Elia, R. Quantifying the limits of a linear temperature response to cumulative CO2 emissions. J. Clim. 28, 9955–9968 (2015).

  • 56.

    Tokarska, K. B., Gillett, N. P., Weaver, A. J., Arora, V. K. & Eby, M. The climate response to five trillion tonnes of carbon. Nat. Clim. Chang. 6, 851 (2016).

  • 57.

    Haustein, K. et al. A real-time global warming index. Sci. Rep. 7, 15417 (2017).

  • 58.

    Huber, M. & Knutti, R. Natural variability, radiative forcing and climate response in the recent hiatus reconciled. Nat. Geosci. 7, 651–656 (2014).

  • 59.

    Pfleiderer, P., Schleussner, C. F., Mengel, M. & Rogelj, J. Global mean temperature indicators linked to warming levels avoiding climate risks. Environ. Res. Lett. 13, 064015 (2018). This paper quantified the impact on remaining carbon budgets of switching between global warming definitions.

  • 60.

    Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the HadCRUT4 data set. J. Geophys. Res. Atmospheres 117, https://doi.org/10.1029/2011JD017187 (2012).

  • 61.

    UNFCCC Report on the Structured Expert Dialogue on the 2013–2015 Review. FCCC/SB/2015/INF.1 http://unfccc.int/resource/docs/2015/sb/eng/inf01.pdf (UNFCCC, 2015).

  • 62.

    The United Nations Environment Programme (UNEP) The Emissions Gap Report 2014. (UNEP, 2014).

  • 63.

    Schurer, A. P., Mann, M. E., Hawkins, E., Tett, S. F. B. & Hegerl, G. C. Importance of the pre-industrial baseline for likelihood of exceeding Paris goals. Nat. Clim. Chang. 7, 563–567 (2017).

  • 64.

    Hawkins, E. et al. Estimating changes in global temperature since the preindustrial period. Bull. Am. Meteorol. Soc. 98, 1841–1856 (2017).

  • 65.

    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241 (2011).

  • 66.

    Stocker, T. F. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 33–115 (Cambridge Univ. Press, 2013).

  • 67.

    Samset, B. H. et al. Climate impacts from a removal of anthropogenic aerosol emissions. Geophys. Res. Lett. 45, 1020–1029 (2018).

  • 68.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 811–922 (Cambridge Univ. Press, 2014).

  • 69.

    Gernaat, D. E. H. J. et al. Understanding the contribution of non-carbon dioxide gases in deep mitigation scenarios. Glob. Environ. Change 33, 142–153 (2015).

  • 70.

    Meinshausen, M. et al. Multi-gas emission pathways to meet climate targets. Clim. Change 75, 151–194 (2006).

  • 71.

    Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) 413–510 (Cambridge Univ. Press, 2014).

  • 72.

    Riahi, K. et al. The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview. Glob. Environ. Change 42, 153–168 (2017).

  • 73.

    Huppmann, D., Rogelj, J., Kriegler, E., Krey, V. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Chang. 8, 1027–1030 (2018).

  • 74.

    Huppmann, D. et al. IAMC 1.5 °C Scenario Explorer and Data hosted by IIASA https://data.ene.iiasa.ac.at/iamc-1.5c-explorer/ (Integrated Assessment Modeling Consortium and International Institute for Applied Systems Analysis, 2018).

  • 75.

    Smith, C. J. et al. FAIR v1.3: a simple emissions-based impulse response and carbon cycle model. Geosci. Model Dev. 11, 2273–2297 (2018).

  • 76.

    Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere-ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

  • 77.

    Myhre, G. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) 659–740 (Cambridge Univ. Press, 2013).

  • 78.

    Kriegler, E. et al. Fossil-fueled development (SSP5): an energy and resource intensive scenario for the 21st century. Glob. Environ. Change 42, 297–315 (2017).

  • 79.

    Ehlert, D. & Zickfeld, K. What determines the warming commitment after cessation of CO2 emissions? Environ. Res. Lett. 12, 015002 (2017).

  • 80.

    Gillett, N. P., Arora, V. K., Zickfeld, K., Marshall, S. J. & Merryfield, W. J. Ongoing climate change following a complete cessation of carbon dioxide emissions. Nat. Geosci. 4, 83–87 (2011).

  • 81.

    Ricke, K. L. & Caldeira, K. Maximum warming occurs about one decade after a carbon dioxide emission. Environ. Res. Lett. 9, 124002 (2014).

  • 82.

    Zickfeld, K. & Herrington, T. The time lag between a carbon dioxide emission and maximum warming increases with the size of the emission. Environ. Res. Lett. 10, 031001 (2015).

  • 83.

    Frölicher, T. L. & Paynter, D. J. Extending the relationship between global warming and cumulative carbon emissions to multi-millennial timescales. Environ. Res. Lett. 10, 075002 (2015).

  • 84.

    Frölicher, T. L., Winton, M. & Sarmiento, J. L. Continued global warming after CO2 emissions stoppage. Nat. Clim. Chang. 4, 40–44 (2014).

  • 85.

    MacDougall, A. H., Zickfeld, K., Knutti, R. & Matthews, H. D. Sensitivity of carbon budgets to permafrost carbon feedbacks and non-CO2 forcings. Environ. Res. Lett. 10, 125003 (2015).

  • 86.

    Zaehle, S. et al. Evaluation of 11 terrestrial carbon–nitrogen cycle models against observations from two temperate free-air CO2 enrichment studies. New Phytol. 202, 803–822 (2014).

  • 87.

    Wenzel, S., Cox, P. M., Eyring, V. & Friedlingstein, P. Projected land photosynthesis constrained by changes in the seasonal cycle of atmospheric CO2. Nature 538, 499–501 (2016).

  • 88.

    Arneth, A. et al. Terrestrial biogeochemical feedbacks in the climate system. Nat. Geosci. 3, 525–532 (2010). This review presents an overview of terrestrial Earth system feedback mechanisms that could further affect TCRE and estimates of remaining carbon budgets.

  • 89.

    Carrer, D., Pique, G., Ferlicoq, M., Ceamanos, X. & Ceschia, E. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops. Environ. Res. Lett. 13, 044030 (2018).

  • 90.

    Allen, M. R. et al. A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. npj Clim. Atmos. Sci. 1, 16 (2018).

  • 91.

    Burke, E. J. et al. Quantifying uncertainties of permafrost carbon–climate feedbacks. Biogeosciences 14, 3051–3066 (2017).

  • 92.

    Schneider von Deimling, T. et al. Observation-based modelling of permafrost carbon fluxes with accounting for deep carbon deposits and thermokarst activity. Biogeosciences 12, 3469–3488 (2015).

  • 93.

    Schneider von Deimling, T. et al. Estimating the near-surface permafrost-carbon feedback on global warming. Biogeosciences 9, 649–665 (2012).

  • 94.

    Schuur, E. A. G. et al. Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015).

  • 95.

    Schaefer, K., Lantuit, H., Romanovsky, V. E., Schuur, E. A. G. & Ronald Witt, R. The impact of the permafrost carbon feedback on global climate. Environ. Res. Lett. 9, 085003 (2014).

  • 96.

    Koven, C. D. et al. A simplified, data-constrained approach to estimate the permafrost carbon–climate feedback. Phil. Trans. R. Soc. A 373, https://doi.org/10.1098/rsta.2014.0423 (2015).

  • 97.

    MacDougall, A. H. & Knutti, R. Projecting the release of carbon from permafrost soils using a perturbed parameter ensemble modelling approach. Biogeosciences 13, 2123–2136 (2016).

  • 98.

    Schwinger, J. & Tjiputra, J. Ocean carbon cycle feedbacks under negative emissions. Geophys. Res. Lett. 45, 5062–5070 (2018).

  • 99.

    Rogelj, J. et al. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 10, 105007 (2015).

  • 100.

    Geden, O. An actionable climate target. Nat. Geosci. 9, 340 (2016).

  • 101.

    Weyant, J. Some contributions of integrated assessment models of global climate change. Rev. Environ. Econ. Policy 11, 115–137 (2017).

  • 102.

    Smith, L. A. & Stern, N. Uncertainty in science and its role in climate policy. Phil. Trans. R. Soc. A 369, 4818–4841 (2011).

  • 103.

    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

  • 104.

    Meinshausen, M., Wigley, T. M. L. & Raper, S. C. B. Emulating atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—Part 2: Applications. Atmos. Chem. Phys. 11, 1457–1471 (2011).

  • 105.

    Zickfeld, K., MacDougall, A. H. & Matthews, H. D. On the proportionality between global temperature change and cumulative CO2 emissions during periods of net negative CO2 emissions. Environ. Res. Lett. 11, 055006 (2016).

  • 106.

    Allen, M. R. et al. Framing and context. In Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change (eds Masson-Delmotte, V. et al.) 47–92 (IPCC/WMO, 2018).

  • 107.

    Cowtan, K. & Way, R. G. Coverage bias in the HadCRUT4 temperature series and its impact on recent temperature trends. Q. J. R. Meteorol. Soc. 140, 1935–1944 (2014).

  • 108.

    Vose, R. S. et al. NOAA’s merged land–ocean surface temperature analysis. Bull. Am. Meteorol. Soc. 93, 1677–1685 (2012).

  • 109.

    Karl, T. R. et al. Possible artifacts of data biases in the recent global surface warming hiatus. Science 348, 1469–1472 (2015).

  • 110.

    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

  • LEAVE A RESPONSE

    Please help keep this Site Going