Please help keep this Site Going

Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Global warming impairs stock–recruitment dynamics of corals – Nature.com

  • 1.

    Scheffer, M. et al. Creating a safe operating space for iconic ecosystems. Science 347, 1317–1319 (2015).

  • 2.

    Johnstone, J. F. et al. Changing disturbance regimes, ecological memory, and forest resilience. Front. Ecol. Environ. 14, 369–378 (2016).

  • 3.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

  • 4.

    Kleypas, J. A. et al. Larval connectivity across temperature gradients and its potential effect on heat tolerance in coral populations. Glob. Change Biol. 22, 3539–3549 (2016).

  • 5.

    Holbrook, S. J. et al. Recruitment drives spatial variation in recovery rates of resilient coral reefs. Sci Rep. 8, 7338 (2018).

  • 6.

    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).

  • 7.

    King, A. D., Karoly, D. J. & Henley, B. J. Australian climate extremes at 1.5 °C and 2 °C of global warming. Nat. Clim. Change 7, 412–416 (2017).

  • 8.

    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

  • 9.

    Heron, S. F. et al. Impacts of Climate Change on World Heritage Coral Reefs: Update to the First Global Scientific Assessment. http://whc.unesco.org/en/news/1878 (UNESCO World Heritage Centre, 2018).

  • 10.

    Figueiredo, J., Baird, A. H. & Connolly, S. R. Synthesizing larval competence dynamics and reef-scale retention reveals a high potential for self-recruitment in corals. Ecology 94, 650–659 (2013).

  • 11.

    Ayre, D. J. & Hughes, T. P. Climate change, genotypic diversity and gene flow in reef-building corals. Ecol. Lett. 7, 273–278 (2004).

  • 12.

    Underwood, J. N., Smith, L. D., van Oppen, M. J. H. & Gilmour, J. P. Ecologically relevant dispersal of corals on isolated reefs: implications for managing resilience. Ecol. Appl. 19, 18–29 (2009).

  • 13.

    Baird, A. H., Guest, J. R. & Willis, B. L. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571 (2009).

  • 14.

    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent heatwaves. Nat. Clim. Change 9, 40–43 (2019).

  • 15.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

  • 16.

    Connell, J. H. Disturbance and recovery of coral assemblages. Coral Reefs 16, S101–S113 (1997).

  • 17.

    Osborne, K. et al. Delayed coral recovery in a warming ocean. Glob. Change Biol. 23, 3869–3881 (2017).

  • 18.

    Connolly, S. R. & Baird, A. H. Estimating dispersal potential for marine larvae: dynamic models applied to scleractinian corals. Ecology 91, 3572–3583 (2010).

  • 19.

    Figueiredo, J., Baird, A. H. & Connolly, S. R. Increased local retention of reef coral larvae as a result of ocean warming. Nat. Clim. Change 4, 498–502 (2014).

  • 20.

    Matz, M. V., Treml, E. A., Aglyamova, G. V. & Bay, L. K. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLOS Genet. 14, e1007220 (2018).

  • 21.

    Hock, K. et al. Connectivity networks reveal the risks of crown-of-thorns starfish outbreaks on the Great Barrier Reef. J. Appl. Ecol. 51, 1188–1196 (2014).

  • 22.

    Howells, E. J., Berkelmans, R., van Oppen, M. J., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).

  • 23.

    Hendry, A. P. Eco-Evolutionary Dynamics (Princeton Univ. Press, New Jersey, 2016).

  • 24.

    Sweatman, H., Delean, S. & Syms, C. Assessing loss of coral cover on Australia’s Great Barrier Reef over two decades, with implications for longer term-trends. Coral Reefs 30, 521–531 (2011).

  • 25.

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131 (2001).

  • 26.

    Álvarez-Noriega, M. et al. Contrasting patterns of changes in abundance following a bleaching event between juvenile and adult scleractinian corals. Coral Reefs 37, 527–532 (2018).

  • 27.

    Gilmour, J. P., Smith, L. D., Heyward, A. J., Baird, A. H. & Pratchett, M. S. Recovery of an isolated coral reef system following severe disturbance. Science 340, 69–71 (2013).

  • 28.

    Allen, M. et al. Special Report on Global Warming of 1.5 °C. http://www.ipcc.ch/report/sr15/ (IPCC, 2018).

  • 29.

    Australian Institute of Marine Science. Long-Term Reef Monitoring Program: Annual Summary Report on Coral Reef Condition for 2017/18. https://www.aims.gov.au/reef-monitoring/gbr-condition-summary-2017–2018 (AIMS, 2018)

  • 30.

    West, J. M. & Salm, R. V. Resistance and resilience to coral bleaching: implications for coral reef conservation and management. Conserv. Biol. 17, 956–967 (2003).

  • 31.

    Hughes, T. P. et al. Patterns of recruitment and abundance of corals along the Great Barrier Reef. Nature 397, 59–63 (1999).

  • 32.

    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

  • 33.

    Baird, A. H. et al. Latitudinal variation in reproductive synchrony in Acropora assemblages: Japan vs Australia. Galaxea 11, 101–108 (2009).

  • LEAVE A RESPONSE

    Please help keep this Site Going