Menopausal Mother Nature

News about Climate Change and our Planet

Uncategorized

Mid-latitude net precipitation decreased with Arctic warming during the Holocene – Nature.com

  • 1.

    Shaw, T. A. et al. Storm track processes and the opposing influences of climate change. Nat. Geosci. 9, 656–664 (2016).

  • 2.

    Semmler, T. et al. Seasonal atmospheric responses to reduced Arctic sea ice in an ensemble of coupled model simulations. J. Clim. 29, 5893–5913 (2016).

  • 3.

    Jackson, C. S. & Broccoli, A. J. Orbital forcing of Arctic climate: mechanisms of climate response and implications for continental glaciation. Clim. Dyn. 21, 539–557 (2003).

  • 4.

    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Global Planet. Change 77, 85–96 (2011).

  • 5.

    Barnes, E. A. & Screen, J. A. The impact of Arctic warming on the midlatitude jet-stream: can it? has it? will it? WIREs Clim. Change 6, 277–286 (2015).

  • 6.

    Overland, J. E. et al. Nonlinear response of mid-latitude weather to the changing Arctic. Nat. Clim. Chang. 6, 992–999 (2016).

  • 7.

    Vihma, T. Effects of Arctic sea ice decline on weather and climate: a review. Surv. Geophys. 35, 1175–1214 (2014).

  • 8.

    Francis, J. A. & Vavrus, S. J. Evidence for a wavier jet stream in response to rapid Arctic warming. Environ. Res. Lett. 10, 014005 (2015).

  • 9.

    Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).

  • 10.

    Chang, E. K. M., Lee, S. & Swanson, K. L. Storm track dynamics. J. Clim. 15, 2163–2183 (2002).

  • 11.

    Son, S.-W. & Lee, S. The response of westerly jets to thermal driving in a primitive equation model. J. Atmos. Sci. 62, 3741–3757 (2005).

  • 12.

    Seager, R. et al. Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Clim. 27, 7921–7948 (2014).

  • 13.

    Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198–1201 (2013).

  • 14.

    Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

  • 15.

    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

  • 16.

    PAGES2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

  • 17.

    Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

  • 18.

    Carlson, A. E. et al. Rapid early Holocene deglaciation of the Laurentide ice sheet. Nat. Geosci. 1, 620–624 (2008).

  • 19.

    Huang, S. P., Pollack, H. N. & Shen, P.-Y. A late Quaternary climate reconstruction based on borehole heat flux data, borehole temperature data, and the instrumental record. Geophys. Res. Lett. 35, L13703 (2008).

  • 20.

    Shuman, B. & Plank, C. Orbital, ice sheet, and possible solar controls on Holocene moisture trends in the North Atlantic drainage basin. Geology 39, 151–154 (2011).

  • 21.

    Coumou, D., Lehmann, J. & Beckmann, J. The weakening summer circulation in the Northern Hemisphere mid-latitudes. Science 348, 324–327 (2015).

  • 22.

    Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92–96 (2018).

  • 23.

    Renssen, H. et al. Simulating the Holocene climate evolution at northern high latitudes using a coupled atmosphere–sea ice–ocean-vegetation model. Clim. Dyn. 24, 23–43 (2005).

  • 24.

    Mauri, A., Davis, B. A. S., Collins, P. M. & Kaplan, J. O. The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data–model comparison. Clim. Past 10, 1925–1938 (2014).

  • 25.

    Rimbu, N., Lohmann, G., Kim, J.-H., Arz, H. W. & Schneider, R. Arctic/North Atlantic Oscillation signature in Holocene sea surface temperature trends as obtained from alkenone data. Geophys. Res. Lett. 30, 1280 (2003).

  • 26.

    Wanner, H. et al. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

  • 27.

    Shin, S.-I., Sardeshmukh, P. D., Webb, R. S., Oglesby, R. J. & Barsugli, J. J. Understanding the Mid-Holocene climate. J. Clim. 19, 2801–2817 (2006).

  • 28.

    Gladstone, R. M. et al. Mid-Holocene NAO: A PMIP2 model intercomparison. Geophys. Res. Lett. 32, L16707 (2005).

  • 29.

    Chen, F. et al. Holocene moisture evolution in arid central Asia and its out-of-phase relationship with Asian monsoon history. Quat. Sci. Rev. 27, 351–364 (2008).

  • 30.

    Pawlowicz, R. M_Map: A Mapping Package for MATLAB (2018).

  • 31.

    Sundqvist, H. S. et al. Arctic Holocene proxy climate database—new approaches to assessing geochronological accuracy and encoding climate variables. Clim. Past 10, 1605–1631 (2014).

  • 32.

    Wanner, H., Solomina, O., Grosjean, M., Ritz, S. P. & Jetel, M. Structure and origin of Holocene cold events. Quat. Sci. Rev. 30, 3109–3123 (2011).

  • 33.

    Emile-Geay, J., McKay, N. P., Wang, J. & Anchukaitis, K. J. CommonClimate/PAGES2k_phase2 code: first public release. https://doi.org/10.5281/zenodo.545815 (2017).

  • 34.

    Shuman, B. N. & Marsicek, J. The structure of Holocene climate change in mid-latitude North America. Quat. Sci. Rev. 141, 38–51 (2016).

  • 35.

    Leopardi, P. C. A partition of the unit sphere into regions of equal area and small diameter. Electron. Trans. Numer. Anal. 25, 309–327 (2006).

  • 36.

    Boos, D. D. Introduction to the bootstrap world. Stat. Sci. 18, 168–174 (2003).

  • 37.

    Jain, S., Lall, U. & Mann, M. E. Seasonality and interannual variations of Northern Hemisphere temperature: Equator-to-pole gradient and ocean–land contrast. J. Clim. 12, 1086–1100 (1999).

  • 38.

    Huybers, P. & Eisenman, I. Integrated summer insolation calculations. IGBP PAGES/WDCA Contribution Series 2006-079 (NOAA/NCDC Paleoclimatology Program, 2006).

  • 39.

    Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

  • 40.

    Braconnot, P. et al. The Paleoclimate Modeling Intercomparison Project contribution to CMIP5. CLIVAR Exchanges Special Issue 56, 16, 15–19 (2011).

  • 41.

    Leduc, G., Schneider, R., Kim, J.-H. & Lohmann, G. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry. Quat. Sci. Rev. 29, 989–1004 (2010).

  • 42.

    Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

  • 43.

    McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. & Zander, P. D. The onset and rate of Holocene Neoglacial cooling in the Arctic. Geophys. Res. Lett. 45, 487-496 (2018).

  • 44.

    Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).

  • 45.

    Bartlein, P. J., Harrison, S. P. & Kenji, I. Underlying causes of Eurasian midcontinental aridity in simulations of mid-Holocene climate. Geophys. Res. Lett. 44, 9020–9028 (2017).

  • 46.

    Ramisch, A. et al. A persistent northern boundary of Indian Summer Monsoon precipitation over Central Asia during the Holocene. Sci. Rep. 6, 25791 (2016).

  • LEAVE A RESPONSE