A team of Harvard scientists and engineers has demonstrated a rechargeable battery that could make storing electricity from intermittently available energy sources, like sun and wind, safe and cost-effective for both residential and commercial use. The new research builds on earlier work by members of the same team that could enable cheaper and more reliable electricity storage at the grid level.

In the new battery, electrons are picked up and released by compounds composed of inexpensive, Earth-abundant elements (carbon, oxygen, nitrogen, hydrogen, iron and potassium) dissolved in water. The compounds are nontoxic, nonflammable, and widely available, making them safer and cheaper than other battery systems.

“This is chemistry I’d be happy to put in my basement,” said Michael J. Aziz, the Gene and Tracy Sykes Professor of Materials and Energy Technologies at the Harvard Paulson School of Engineering and Applied Sciences (SEAS), and the project’s principal investigator. “The nontoxicity and cheap, abundant materials placed in water solution mean that it’s safe — it can’t catch on fire — and that’s huge when you’re storing large amounts of electrical energy anywhere near people.”

How the flow battery functions

<br />